Natural Science Hub Search function
Type your keywords and we will find the results

-
Cross-Talk between Obesity and Diabetes: Introducing Polyphenols as an Effective Phytomedicine to Combat the Dual Sword Diabesity.
- Date:
- Author: Shah MA | Haris M | Faheem HI | Hamid A | Yousaf R | Rasul A | Shah GM | Khalil AAK | Wahab A | Khan H | Alhasani RH | Althobaiti NA |
Obesity-associated diabetes mellitus, a chronic metabolic affliction accounting for 90% of all diabetic patients, has been affecting humanity extremely badly and escalating the risk of developing other serious disorders. It is observed that 0.4 billion people globally have diabetes, whose major cause is obesity. Currently, innumerable synthetic drugs like alogliptin and rosiglitazone are being used to get through diabetes, but they have certain complications, restrictions with severe side effects, and toxicity issues. Recently, the frequency of plant-derived phytochemicals as advantageous substitutes against diabesity is increasing progressively due to their unparalleled benefit of producing less side effects and toxicity. Of these phytochemicals, dietary polyphenols have been accepted as potent agents against the dual sword "diabesity". These polyphenols target certain genes and molecular pathways through dual mechanisms such as adiponectin upregulation, cannabinoid receptor antagonism, free fatty acid oxidation, ghrelin antagonism, glucocorticoid inhibition, sodium-glucose cotransporter inhibition, oxidative stress and inflammation inhibition etc. which sequentially help to combat both diabetes and obesity. In this review, we have summarized the most beneficial natural polyphenols along with their complex molecular pathways during diabesity.
Read More on PubMed -
Fatty liver in lipodystrophy: A review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement.
- Date:
- Author: Polyzos SA | Perakakis N | Mantzoros CS |
Lipodystrophy is a group of clinically heterogeneous, inherited or acquired, disorders characterized by complete or partial absence of subcutaneous adipose tissue that may occur simultaneously with the pathological, ectopic, accumulation of fat in other regions of the body, including the liver. Fatty liver adds significantly to hepatic and extra-hepatic morbidity in patients with lipodystrophy. Lipodystrophy is strongly associated with severe insulin resistance and related comorbidities, such as hyperglycemia, hyperlipidemia and nonalcoholic fatty liver disease (NAFLD), but other hepatic diseases may co-exist in some types of lipodystrophy, including autoimmune hepatitis in acquired lipodystrophies, or viral hepatitis in human immunodeficiency virus (HIV)-associated lipodystrophy. The aim of this review is to summarize evidence linking lipodystrophy with hepatic disease and to provide a special focus on potential therapeutic perspectives of leptin replacement therapy and adiponectin upregulation in lipodystrophy.
Read More on PubMed -
Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p < 0.05) upregulated the DsbA-L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p < 0.05) promoted the secretion of total and HMW adiponectin secretion in HG-treated adipocytes. In addition, LC significantly (p < 0.05) decreased ROS production and MCP-1 secretion in HG-treated cells. We further investigated whether MCP-1 has any role of LC on DsbA-L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.
Read More on PubMed -
Does adiponectin upregulation attenuate the severity of acute pancreatitis in obesity?
- Date:
- Author: Al-Azzawi HH | Ziegler KM | Swartz-Basile DA | Wang S | Pitt HA | Zyromski NJ |
Obesity is an independent risk factor for severe acute pancreatitis, though the mechanisms underlying this association are unknown. The powerful anti-inflammatory adipokine adiponectin is decreased in obesity. We recently showed that the severity of pancreatitis in obese mice is inversely related to circulating adiponectin levels, and therefore hypothesized that adiponectin upregulation would attenuate the severity of pancreatitis in obese mice.
Read More on PubMed -
Prevention of steatohepatitis by pioglitazone: implication of adiponectin-dependent inhibition of SREBP-1c and inflammation.
- Date:
- Author: Da Silva Morais A | Lebrun V | Abarca-Quinones J | Brichard S | Hue L | Guigas B | Viollet B | Leclercq IA |
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonist drugs, like pioglitazone (PGZ), are proposed as treatments for steatohepatitis. Their mechanisms of action remain ill-clarified.
Read More on PubMed -
PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin.
- Date:
- Author: Clasen R | Schupp M | Foryst-Ludwig A | Sprang C | Clemenz M | Krikov M | Thöne-Reineke C | Unger T | Kintscher U |
The adipose-specific protein adiponectin has been recently discovered to improve insulin sensitivity. Angiotensin type-1 receptor (AT1R) blockers (ARBs) reduce the incidence of type 2 diabetes mellitus by mostly unknown molecular mechanisms. To identify new antidiabetic mechanisms of ARBs, we studied the regulation of adiponectin by angiotensin II (Ang II) and different ARBs in murine 3T3-L1 adipocytes and obese Zucker rats. Adiponectin protein expression was markedly stimulated by Ang II (5 nmol/L), which was inhibited by blockade of the AT2R, and further enhanced by the ARB irbesartan. Irbesartan-mediated adiponectin upregulation started beyond the concentrations needed for AT1R blockade and was also present in the absence of Ang II, implicating an AT1R-independent mechanism of action. Recently, certain ARBs (irbesartan, telmisartan) were identified as ligands of the peroxisome proliferator-activated receptor (PPAR)gamma. Telmisartan also stimulated adiponectin protein expression, whereas the non-PPARgamma-activating ARB eprosartan had no effect. Blockade of PPARgamma activation by the PPARgamma antagonist GW9662 markedly inhibited irbesartan-induced adiponectin expression. Cognate mRNA levels of adiponectin were not affected by ARBs. Kinetic studies using the protein synthesis inhibitor cycloheximide showed that irbesartan prevented the cellular depletion of adiponectin protein. Finally, administration of irbesartan to obese Zucker rats improved insulin sensitivity and attenuated adiponectin serum depletion. The present study demonstrates that AT2R activation and certain ARBs induce adiponectin in adipocytes, which was associated with an improvement of parameters of insulin sensitivity in vivo. ARB-induced adiponectin stimulation is likely to be mediated via PPARgamma activation involving a post-transcriptional mechanism.
Read More on PubMed