Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • To study the effect of the NLRP3/autophagy pathway on the photoreceptor inflammatory response and the protective mechanism of CY-09 and astaxanthin (AST).

    Read More on PubMed
  • Neovascular age-related macular degeneration (AMD), a leading cause of blindness, requires frequent intravitreal injection of antivascular endothelial growth factor (anti-VEGF), which could generate a succession of complications with poor patient compliance. The current VEGF-targeting therapies often fail in half of patients due to the complex pathologic microenvironment of excessive reactive oxygen species (ROS) production, and increased levels of inflammation are accompanied by choroidal neovascularization (CNV). We herein reported multifunctional nanotherapeutics featuring superior antioxidant and anti-inflammation properties that aim to reverse the pathological condition, alongside its strong targeted antiangiogenesis to CNV and its ability to provide long-term sustained bioactive delivery via the minimally invasive subconjunctival injection, so as to achieve satisfactory wet AMD treatment effects. Concretely, the nanomedicine was designed by coencapsulation of astaxanthin (AST), a red pigmented carotenoid known for its antioxidative, anti-inflammatory and antiapoptotic properties, and axitinib (AXI), a small molecule tyrosine kinase inhibitor that selectively targets the vascular epidermal growth factor receptor for antiangiogenesis, into the Food and Drug Administration (FDA) approved poly(lactic--glycolic acid) (PLGA), which forms the nanodrug of PLGA@AST/AXI. Our results demonstrated that a single-dose subconjunctival administration of PLGA@AST/AXI showed a rational synergistic effect by targeting various prevailing risk factors associated with wet AMD, ensuring persistent drug release profiles, maintaining good ocular biocompatibility, and causing no obvious mechanical damage. Such attributes are vital and hold significant potential in treating ocular posterior segment diseases. Moreover, this nanotherapeutic strategy represents a versatile and broad-spectrum nanoplatform, offering a promising alternative for the complex pathological progression of other neovascular diseases.

    Read More on PubMed
  • The weaning phase in piglets causes significant physiological stress, disrupts intestinal integrity and reduces productivity, necessitating strategies to improve intestinal health and nutrient absorption. While current research highlights the role of diet in mitigating these adverse effects, identifying effective dietary supplements remains a challenge. This study evaluated the effects of Hermetia illucens (HI) larvae meal and astaxanthin (AST) on the intestinal histology of weaned piglets. In a controlled experiment, 48 weaned piglets were divided into six groups and received varying levels of HI larval meal (2.5% and 5%) and AST in their diets. The methodology involved comprehensive histological examinations of the small intestine, assessing absorption area, villi elongation, crypt depth, goblet cells, enterocytes and expression of ileal tight junction (TJ) proteins. The study found that HI larval meal significantly improved nutrient absorption in the jejunum and ileum (p < 0.001), thereby enhancing feed conversion. AST supplementation increased the number of enterocytes (p < 0.001). Both HI larval meal and AST positively affected intestinal morphology and function, increasing muscularis muscle mass and villi elongation (p < 0.001 and p < 0.05, respectively). The 2.5% HI meal improved the villi length to crypt depth ratio and slightly increased the goblet cell count (both p < 0.05). Ki-67 antibody analysis showed increased cell proliferation in the duodenal and jejunal crypts, particularly with the 2.5% HI meal (p < 0.001). Insect meal did not affect TJ protein expression, indicating that it had no effect on intestinal permeability. These findings suggest that HI larval meal and AST can enhance the intestinal wellness and productivity of weaned piglets.

    Read More on PubMed
  • Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.

    Read More on PubMed
  • Astaxanthin (ATX) is a strong antioxidant drug. This study aimed to investigate the effects of ATX on podocytes in diabetic nephropathy and the underlying renal protective mechanism of ATX, which leads to pathological crosstalk with mesangial cells. In this study, diabetic rats treated with ATX exhibited reduced 24-h urinary protein excretion and decreased blood glucose and lipid levels compared to vehicle-treated rats. Glomerular mesangial matrix expansion and renal tubular epithelial cell injury were also attenuated in ATX-treated diabetic rats compared to control rats. ATX treatment markedly reduced the α-SMA and collagen IV levels in the kidneys of diabetic rats. Additionally, ATX downregulated autophagy levels. , compared with normal glucose, high glucose inhibited LC3-II expression and increased p62 expression, whereas ATX treatment reversed these changes. ATX treatment also inhibited α-SMA and collagen IV expression in cultured podocytes. Secreted factors (vascular endothelial growth factor B and transforming growth factor-β) generated by high glucose-induced podocytes downregulated autophagy in human mesangial cells (HMCs); however, this downregulation was upregulated when podocytes were treated with ATX. The current study revealed that ATX attenuates diabetes-induced kidney injury likely through the upregulation of autophagic activity in podocytes and its antifibrotic effects. Crosstalk between podocytes and HMCs can cause renal injury in diabetes, but ATX treatment reversed this phenomenon.

    Read More on PubMed
  • , a methylotrophic yeast, can utilize methanol as a carbon source and energy source to synthesize high-value chemicals, and is an ideal host for biomanufacturing. Constructing the . cell factory is somewhat impeded due to the absence of genetic tools for manipulating multi-gene biosynthetic pathways. To broaden its application in the field of metabolic engineering, this study identified and screened 15 novel integration sites in using CRISPR-Cpf1 genome editing technology, with EGFP serving the reporter protein. These integration sites have integration efficiencies of 10-100 % and varying expression strengths, which allow for selection based on the expression levels of genes as needed. Additionally, these integrated sites are applied in the heterologous biosynthesis of , such as the astaxanthin biosynthetic pathway and the carbon dioxide fixation pathway of the Calvin-Benson-Bassham (CBB) cycle. During the three-site integration process, the 8 genes of the CBB cycle were integrated into the genome of . This indicates the potential of these integration sites for integrating large fragments and suggests their successful application in metabolic engineering of . This may lead to improved efficiency of genetic engineering in .

    Read More on PubMed
  • The reddish-orange color of Antarctic krill oil fades during storage, and the mechanism remains unclear. Model systems containing different combinations of astaxanthin (ASTA), phosphatidylethanolamine (PE), and tocopherol were subjected to accelerated storage. Among all groups containing ASTA, only the ones with added PE showed significant fading. Meanwhile, the specific UV-visible absorption (A and A) showed a similar trend. Peroxide value and thiobarbituric acid reactive substances increased during storage, while ASTA and PE contents decreased. Correlation analysis suggested that oxidized PE promoted fading by accelerating the transformation of ASTA. PE content exceeded the critical micelle concentration (1μg/g) indicating the formation of reverse micelles. Molecular docking analysis indicated that PE also interacted with ASTA in an anchor-like manner. Therefore, it is speculated that amphiphilic ASTA is more readily distributed at the oil-water interface of reverse micelles and captured by oxidized PE, which facilitates oxidation transfer, leading to ASTA oxidation and color fading.

    Read More on PubMed
  • Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione; AXT) is a xanthophyll β-carotenoid found in microalgae, seafood, fungi, complex plants, flamingos, and quail. It is well known that AXT plays a role as a drug with antioxidant and antitumor properties. Furthermore, several studies have reported that the reagent shows anti-inflammatory and neuroprotective effects. Recently, it was found that AXT acts as a peroxisome proliferator-activated receptor γ (PPARγ) modulator. To investigate the effect of AXT on MCF-7 cells (a human breast cancer cell line), the cells were treated with various concentrations of AXT. The treatment induced the decrease in cell number in a dose-dependent manner. Additionally, the Annexin V-positive cells were increased by the AXT treatment. These results indicated that apoptosis was induced in the tumor cells through the treatment of AXT. To elucidate the connection between apoptosis and p53, the levels of p53 and p21 proteins were assessed. Consequently, it was observed that the expression of p53 and p21 increased proportionally to the concentration of the AXT treatment. These findings suggest that the apoptosis of MCF-7 cells induced by AXT operates through a p53-dependent pathway, implying that AXT could potentially have a beneficial role in future breast cancer treatments. Thus, our results will provide a direction for future cancer challenges.

    Read More on PubMed
  • The gastrointestinal tract has a pivotal role in nutrient absorption, immune function, and overall homeostasis. The ileum segment of the small intestine plays respective roles in nutrient breakdown and absorption. The purpose of this study was to investigate the impact of heat-induced oxidative stress and the potential mitigating effects of an astaxanthin antioxidant treatment on the ileum of broilers. By comparing the growth performance and gene expression profiles among three groups-thermal neutral, heat stress, and heat stress with astaxanthin-thermal neutral temperature conditions of 21-22 °C and heat stress temperature of 32-35 °C, this research aims to elucidate the role of astaxanthin in supporting homeostasis and cellular protection in the ileum. Results showed both treatments under heat stress experienced reduced growth performance, while the group treated with astaxanthin showed a slightly lesser decline. Results further showed the astaxanthin treatment group significantly upregulated in the cytoprotective gene expression for , and , as well as the upregulation of epithelial integrity genes , and . In conclusion, our experimental findings demonstrate upregulation of cytoprotective and epithelial integrity genes, suggesting astaxanthin may effectively enhance the cellular response to heat stress to mitigate oxidative damage and contribute to cytoprotective capacity.

    Read More on PubMed
  • Astaxanthin is a powerful antioxidant known to enhance skin, cardiovascular, eye, and brain health. In this study, the genome insights and astaxanthin production of two newly isolated astaxanthin-producing yeasts (TL35-5 and PL61-2) were evaluated and compared. Based on their phenotypic and genotypic characteristics, TL35-5 and PL61-2 were identified as basidiomycetous yeasts belonging to Rhodotorula paludigena and Rhodotorula sampaioana, respectively. To optimize astaxanthin production, the effects of cultural medium composition and cultivation conditions were examined. The optimal conditions for astaxanthin production in R. paludigena TL35-5 involved cultivation in AP medium containing 10 g/L glucose as the sole carbon source, supplemented with 1.92 g/L potassium nitrate, pH 6.5, and incubation at 20°C for 3 days with shaking at 200 rpm. For R. sampaioana PL61-2, the optimal medium composition for astaxanthin production consisted of AP medium with 40 g/L glucose, supplemented with 0.67 g/L urea, pH 7.5, and the fermentation was carried out at 20°C for 3 days with agitating at 200 rpm. Under their optimal conditions, R. paludigena TL35-5 and R. sampaioana PL61-2 gave the highest astaxanthin yields of 3.689 ± 0.031 and 4.680 ± 0.019 mg/L, respectively. The genome of TL35-5 was 20,982,417 bp in length, with a GC content of 64.20%. A total of 6,789 protein-encoding genes were predicted. Similarly, the genome of PL61-2 was 21,374,169 bp long, with a GC content of 64.88%. It contained 6,802 predicted protein-encoding genes. Furthermore, all essential genes involved in astaxanthin biosynthesis, including CrtE, CrtYB, CrtI, CrtS, and CrtR, were identified in both R. paludigena TL35-5 and R. sampaioana PL61-2, providing evidence for their ability to produce astaxanthin.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!