Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • Acrylamide is formed during heating of starchy foods at high temperature and induces reproductive toxicity. Our study is designed to evaluate the chemical constitution and anti-infertility effect of Lycium shawii seeds extract on female rats. Nutritional profile was estimated, and major active compounds were isolated and identified. Biological evaluation of Lycium shawii extract on female rats was performed and measured by prolactin, follicular stimulating hormone, luteinizing hormone, estradiol, progesterone, tumor necrosis factor-α, interleukin-6, heme oxygenase-1, nuclear respiratory factor-2, malondialdehyde, glutathione, DNA fragmentation and ovarian architecture parameters. Data revealed that presence of ɤ-tocopherol, vitamin C, magnesium and thirty-eight bioactive compounds in the fractions of Lycium shawii. Major constituents from GC/MS, were 9, 12-octadecadienoic acid (Z, Z), methyl ester, 2,7-Octadiene-1,6-diol and 2,6-dimethyl hydroxy linalool but further five compounds (i.e. lupenone, betulin, lupeol acetate, stigmasterol and β-sitosterol-D-glucoside) were isolated and identified. Treatment of rats with the seeds extract post acrylamide administration ameliorated female sex hormones, oxidative stress, inflammation, DNA damage, and ovarian structure. In conclusion, Lycium shawii petroleum ether seeds fraction may be considered as a nutraceutical agent for improving infertility disorders, oxidative stress and inflammation due to its richness with biologically active phenolic and flavonoids compounds.

    Read More on PubMed
  • β-Caryophyllene possesses potential anticancer properties against various cancers, including breast, colon, and lung cancer. Therefore, the essential oil of Ayapana triplinervis, which is rich in β-caryophyllene, can be a potential herbal remedy for treating cancer. However, molecular and genomic studies on A. triplinervis are still sparse. In this study, we obtained 14.7 Gb of RNA-Seq data from A. triplinervis leaf RNA and assembled 1,37,554 transcripts with an N50 value of 1,437 bp. We annotated 72,436 (52.7%) transcripts and mapped 10,640 transcripts to 156 biochemical pathways. Among them, 218 were related to terpenoid backbone biosynthesis, while 27 were linked to sesquiterpenoid and triterpenoid pathways. Ninety-four transcripts were annotated in the β-caryophyllene and lupeol pathways. From these transcripts, for the first time, we identified 25 full-length genes encoding all the 17 enzymes involved in β-caryophyllene biosynthesis and an additional five genes involved in lupeol biosynthesis. These genes will be useful for the metabolic engineering of β-caryophyllene and lupeol biosynthesis, not just in A. triplinervis but also in other species. Keywords: β-caryophyllene, Eupatorium ayapana, Eupatorium triplinervis, lupeol, transcriptome.

    Read More on PubMed
  • Dengue fever has become a significant worldwide health concern, because of its high morbidity rate and the potential for an increase in mortality rates due to lack of adequate treatment. There is an immediate need for the development of effective medication for dengue fever.

    Read More on PubMed
  • Phospholipase A (PLA) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-β-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.

    Read More on PubMed
  • The NF-κB pathway plays a pivotal role in impeding the diabetic wound healing process, contributing to prolonged inflammation, diminished angiogenesis, and reduced proliferation. In contrast to modern synthetic therapies, naturally occurring phytoconstituents are well-studied inhibitors of the NF-κB pathway that are now attracting increased attention in the context of diabetic wound healing because of lower toxicity, better safety and efficacy, and cost-effectiveness. This study explores recent research on phytoconstituent-based therapies and delve into their action mechanisms targeting the NF-κB pathway and potential for assisting effective healing of diabetic wounds. For this purpose, we have carried out surveys of recent literature and analyzed studies from prominent databases such as Science Direct, Scopus, PubMed, Google Scholar, EMBASE, and Web of Science. The classification of phytoconstituents into various categorie such as: alkaloids, triterpenoids, phenolics, polyphenols, flavonoids, monoterpene glycosides, naphthoquinones and tocopherols. Noteworthy phytoconstituents, including Neferine, Plumbagin, Boswellic acid, Genistein, Luteolin, Kirenol, Rutin, Vicenin-2, Gamma-tocopherol, Icariin, Resveratrol, Mangiferin, Betulinic acid, Berberine, Syringic acid, Gallocatechin, Curcumin, Loureirin-A, Loureirin-B, Lupeol, Paeoniflorin, and Puerarin emerge from these studies as promising agents for diabetic wound healing through the inhibition of the NF-κB pathway. Extensive research on various phytoconstituents has revealed how they modulate signalling pathways, including NF-κB, studies that demonstrate the potential for development of therapeutic phytoconstituents to assist healing of chronic diabetic wounds.

    Read More on PubMed
  • Extensive research on Lupeol's potential in cancer prevention highlights its ability to target various cancer-related factors. It regulates proliferative markers, modulates signaling pathways, including PI3K/AKT/mTOR, and influences inflammatory and apoptotic mechanisms. Additionally, Lupeol demonstrates selectivity in killing cancer cells while sparing normal cells, thus minimizing the risk of toxic effects on healthy tissues.

    Read More on PubMed
  • Recently, there has been great interest in plant-derived compounds known as phytochemicals. The pentacyclic oleanane-, ursane-, and lupane-type triterpenes are phytochemicals that exert significant activity against diseases like cancer. Lung cancer is the leading cause of cancer-related death worldwide. Although chemotherapy is the treatment of choice for lung cancer, its effectiveness is hampered by the dose-limiting toxic effects and chemoresistance. Herein, we investigated six pentacyclic triterpenes, oleanolic acid, ursolic acid, asiatic acid, betulinic acid, betulin, and lupeol, on NSCLC A549 cells. These triterpenes have several structural variations that can influence the activation/inactivation of key cellular pathways. From our results, we determined that most of these triterpenes induced apoptosis, S-phase and G2/M-phase cycle arrest, the downregulation of ribonucleotide reductase (RR), reactive oxygen species, and caspase 3 activation. For chemoresistance markers, we found that most triterpenes downregulated the expression of MAPK/PI3K, STAT3, and PDL1. In contrast, UrA and AsA also induced DNA damage and autophagy. Then, we theoretically determined other possible molecular targets of these triterpenes using the online database ChEMBL. The results showed that even slight structural changes in these triterpenes can influence the cellular response. This study opens up promising perspectives for further research on the pharmaceutical role of phytochemical triterpenoids.

    Read More on PubMed
  • Natural products are a great resource for physiologically active substances. It is widely recognized that a major percentage of current medications are derived from natural compounds or their synthetic analogues. Triterpenoids are widespread in nature and can prevent cancer formation and progression. Despite considerable interest in these triterpenoids, their interactions with lipid bilayers still need to be thoroughly investigated. The aim of this study is to examine the interactions of lupeol, a pentacyclic triterpenoid, with model membranes composed of 1,2‑dipalmitoyl‑sn‑glycerol‑3‑phosphocholine (DPPC) by using non-invasive techniques such as differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The DSC study demonstrated that the incorporation of lupeol into DPPC membranes shifts the L-to-P and P-to-L phase transitions toward lower values, and a loss of main phase transition cooperativity is observed. The FTIR spectra indicated that the increasing concentration (10 mol%) of lupeol causes an increase in the molecular packing and membrane fluidity. In addition, it is found that lupeol's OH group preferentially interacts with the head group region of the DPPC lipid bilayer. These findings provide detailed information on the effect of lupeol on the DPPC head group and the conformation and dynamics of the hydrophobic chains. In conclusion, the effect of lupeol on the structural features of the DPPC membrane, specifically phase transition and lipid packing, has implications for understanding its biological function and its applications in biotechnology and medicine.

    Read More on PubMed
  • Polycystic ovary syndrome (PCOS) is one of the main causes of infertility in women. This study was conducted to uncover the effects of lupeol as an anti-androgenic triterpene on experimentally-induced PCOS in mice.

    Read More on PubMed
  • Acute kidney injury (AKI) caused by ischemia and, exogenous or endogenous nephrotoxic agents poses a serious health issue. AKI is seen in 1% of all hospital admissions, 2-5% of hospitalizations and 67% of intensive care unit (ICU) patients. The in-hospital mortality rates for AKI is 40-50, and >50% for ICU patients. Ischemia-reperfusion (I/R) injury in the kidney can activate inflammatory responses and oxidative stress, resulting in AKI. The common endpoint in acute tubular necrosis is a cellular insult secondary to ischemia or direct toxins, which results in effacement of brush border, cell death and decreased function of tubular cells. The aim of the present study was to assess if the reported antioxidant and anti-inflammatory agent lupeol can exert any effects against renal I/R damage. In total, 24 Wistar Albino rats were randomly assigned into four groups of 6, namely Sham, lupeol, ischemia and therapy groups. In the lupeol group, intraperitoneal administration of 100 mg/kg lupeol was given 1 h before laparotomy, whilst only laparotomy was conducted in the sham group. The renal arteries of both kidneys were clamped for 45 min, 1 h after either intraperitoneal saline injection (in the ischemia group) or 100 mg/kg lupeol application (in the therapy group). The blood samples and renal tissues of all rats were collected after 24 h. In blood samples, blood urea nitrogen (BUN) was measured by the urease enzymatic method, and creatinine was measured by the kinetic Jaffe method. Using ELISA method, TNF-α and IL-6 levels were measured in the blood samples, whereas malondialdehyde (MDA), glutathione (GSH), caspase-3 levels were measured in kidney tissues. In addition, kidney histopathological analysis was performed by evaluating the degree of degeneration, tubular dilatation, interstitial lymphocyte infiltration, protein cylinders, necrosis and loss of brush borders. It was determined that renal damage occurred due to higher BUN, creatinine, MDA, TNF-α and caspase-3 values observed in the kidney tissues and blood samples of rats in ischemia group compared with the Sham group. Compared with those in the ischemia group, rats in the therapy group exhibited increased levels of GSH and reduced levels of BUN, TNF-α, MDA. Furthermore, the ischemia group also had reduced histopathological damage scores. Although differences in creatinine, IL-6 and caspase-3 levels were not statistically significant, they were markedly reduced in the treatment group. Taken together, these findings suggest that lupeol can prevent kidney damage as mainly evidenced by the reduced histopathological damage scores, decreased levels of oxidative stress and reduced levels of inflammatory markers. These properties may allow lupeol to be used in the treatment of AKI.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!