Natural Science Hub Search function
Type your keywords and we will find the results
-
Effect of a Novel Food Rich in Miraculin on the Oral Microbiome of Malnourished Oncologic Patients with Dysgeusia.
- Date:
- Author: Plaza-Diaz J  |  Ruiz-Ojeda FJ  |  López-Plaza B  |  Brandimonte-Hernández M  |  Álvarez-Mercado AI  |  Arcos-Castellanos L  |  Feliú-Batlle J  |  Hummel T  |  Palma-Milla S  |  Gil A  | 
Dysgeusia contributes to the derangement of nutritional status in patients with cancer as well as worsening the quality of life. There has been a lack of effective treatments for taste disorders provided by the pharmaceutical industry.
Read More on PubMed -
Miracle Fruit, a Potential Taste-modifier to Improve Food Preferences: A Review.
- Date:
- Author: Diyapaththugama S  |  Mulaw GF  |  Ajaz M  |  Colson Shilton N  |  Singh I  |  Jani R  | 
The miracle fruit contains the glycoprotein miraculin which can modify the taste perception of food and beverages at low pH conditions, altering the consumers' food preferences. This review aims to critically evaluate all available evidence on miracle fruit/ miraculin and taste modification and its potential role in improving food preferences.
Read More on PubMed -
Sugar or Sweetener?
- Date:
- Author: Mooradian AD  | 
Human beings have a natural craving for sweets. The intensity of this craving varies with genetic and environmental factors; however, excessive use of table sugar has been associated with adverse health outcomes, including increased risk of obesity, diabetes mellitus, and cardiovascular disease. As such, the World Health Organization has called for restricting sugar consumption to less than 5% of total energy intake. For those who have a "sweet tooth," implementing these guidelines is not easy. Hence, the interest in alternative sweeteners. There are eight high-intensity sweeteners that are either approved by the Food and Drug Administration or designated as generally regarded to be safe. The safety of the currently available sweeteners has been questioned. Large cohort studies have reported a positive correlation between sweetener use with weight gain and metabolic risk. A recent meta-analysis, however, concluded that using low- or no-calorie sweetener was associated with small improvements in body weight and cardiometabolic risk factors without evidence of harm. Nevertheless, the World Health Organization advises against the use of nonsugar sweeteners. The biological effects of natural sweeteners such as steviol, monk fruit extract, tagatose, allulose, and sweet proteins (eg, brazzien, miraculin, thaumatin) are not well studied. Eating less sugar is a prudent thing to do, but for people with diabetes mellitus and those at risk of diabetes mellitus, diversifying the type of the sweetener and limiting the quantity may be reasonable.
Read More on PubMed -
Efficacy and Safety of Habitual Consumption of a Food Supplement Containing Miraculin in Malnourished Cancer Patients: The CLINMIR Pilot Study.
- Date:
- Author: López-Plaza B  |  Álvarez-Mercado AI  |  Arcos-Castellanos L  |  Plaza-Diaz J  |  Ruiz-Ojeda FJ  |  Brandimonte-Hernández M  |  Feliú-Batlle J  |  Hummel T  |  Gil Á  |  Palma-Milla S  | 
Taste disorders (TDs) are common among systemically treated cancer patients and negatively impact their nutritional status and quality of life. The novel food approved by the European Commission (EFSA), dried miracle berries (DMB), contains the natural taste-modifying protein miraculin. DMB, also available as a supplement, has emerged as a possible alternative treatment for TDs. The present study aimed to evaluate the efficacy and safety of habitual DMB consumption in malnourished cancer patients undergoing active treatment. An exploratory clinical trial was carried out in which 31 cancer patients were randomized into three arms [standard dose of DMB (150 mg DMB/tablet), high dose of DMB (300 mg DMB/tablet) or placebo (300 mg freeze-dried strawberry)] for three months. Patients consumed a DMB tablet or placebo daily before each main meal (breakfast, lunch, and dinner). Throughout the five main visits, electrochemical taste perception, nutritional status, dietary intake, quality of life and the fatty acid profile of erythrocytes were evaluated. Patients consuming a standard dose of DMB exhibited improved taste acuity over time (% change right/left side: -52.8 ± 38.5/-58.7 ± 69.2%) and salty taste perception (2.29 ± 1.25 vs. high dose: 2.17 ± 1.84 vs. placebo: 1.57 ± 1.51 points, < 0.05). They also had higher energy intake ( = 0.075) and covered better energy expenditure (107 ± 19%). The quality of life evaluated by symptom scales improved in patients receiving the standard dose of DMB (constipation, = 0.048). The levels of arachidonic (13.1 ± 1.8; 14.0 ± 2.8, 12.0 ± 2.0%; = 0.004) and docosahexaenoic (4.4 ± 1.7; 4.1 ± 1.0; 3.9 ± 1.6%; = 0.014) acids in erythrocytes increased over time after DMB intake. The standard dose of DMB increased fat-free mass vs. placebo (47.4 ± 9.3 vs. 44.1 ± 4.7 kg, = 0.007). Importantly, habitual patients with DMB did not experience any adverse events, and metabolic parameters remained stable and within normal ranges. In conclusion, habitual consumption of a standard 150 mg dose of DMB improves electrochemical food perception, nutritional status (energy intake, fat quantity and quality, fat-free mass), and quality of life in malnourished cancer patients receiving antineoplastic treatment. Additionally, DMB consumption appears to be safe, with no changes in major biochemical parameters associated with health status. Clinical trial registered (NCT05486260).
Read More on PubMed -
Drivers of the Sisrè berry plant [Synsepalum dulcificum (Schumach & Thonn.) Daniell] rhizosphere bacterial communities in Benin.
- Date:
- Author: Adigoun RFR  |  Durand A  |  Tchokponhoué DA  |  Achigan-Dako EG  |  Aholoukpè HNS  |  Bokonon-Ganta AH  |  Benizri E  | 
Each plant species has its own rhizobacteriome, whose activities determine both soil biological quality and plant growth. Little knowledge exists of the rhizosphere bacterial communities associated with opportunity crops with high economic potential such as Synsepalum dulcificum. Native to West Africa, this shrub is famous for its red berries representing the only natural source of miraculin, a glycoprotein, with sweetening properties, but also playing a role in the treatment of cancer and diabetes. This study aimed to characterize the structure and diversity of rhizobacterial communities associated with S. dulcificum and to identify the parameters determining this diversity. An initial sampling stage allowed the collection of rhizosphere soils from 29 S. dulcificum accessions, belonging to three distinct phenotypes, from 16 municipalities of Benin, located either on farms or in home gardens. The bacterial diversity of these rhizosphere soils was assessed by Illumina sequencing of the 16S rRNA gene after DNA extraction from these soils. Furthermore, an analysis of the physicochemical properties of these soils was carried out. All accessions combined, the most represented phylum appeared to be Actinobacteriota, with an average relative abundance of 43.5 %, followed by Proteobacteria (14.8 %), Firmicutes (14.3 %) and Chloroflexi (12.2 %), yet the relative abundance of dominant phyla varied significantly among accessions (p < 0.05). Plant phenotype, habitat, climate and soil physicochemical properties affected the bacterial communities, but our study pointed out that soil physicochemical parameters were the main driver of rhizobacterial communities' structure and diversity. Among them, the assimilable phosphorus, lead, potassium, arsenic and manganese contents, texture and cation exchange capacity of rhizosphere soils were the major determinants of the composition and diversity of rhizosphere bacterial communities. These results suggested the possibility of improving the growth conditions and productivity of S. dulcificum, by harnessing its associated bacteria of interest and better managing soil physicochemical properties.
Read More on PubMed -
Tissue-specific proteome profile analysis reveals regulatory and stress responsive networks in passion fruit during storage.
- Date:
- Author: Garcia E  |  Koh J  |  Wu X  |  Sarkhosh A  |  Liu T  | 
Passiflora edulis, commonly known as passion fruit, is a crop with a fragrant aroma and refreshingly tropical flavor that is a valuable source of antioxidants. It offers a unique opportunity for growers because of its adaptability to tropical and subtropical climates. Passion fruit can be sold in the fresh market or used in value-added products, but its postharvest shelf life has not been well-researched, nor have superior cultivars been well-developed. Understanding the proteins expressed at the tissue level during the postharvest stage can help improve fruit quality and extend shelf life. In this study, we carried out comparative proteomics analysis on four passion fruit tissues, the epicarp, mesocarp, endocarp, and pulp, using multiplexed isobaric tandem mass tag (TMT) labeling quantitation. A total of 3352 proteins were identified, including 295 differentially expressed proteins (DEPs). Of these DEPs, 213 showed a fold increase greater than 1.45 (50 proteins) or a fold decrease less than 0.45 (163 proteins) with different patterns among tissue types. Among the DEPs, there were proteins expressed with functions in oxygen scavenging, lipid peroxidation, response to heat stress, and pathogen resistance. Thirty-six proteins were designated as hypothetical proteins were characterized for potential functions in immunity, cell structure, homeostasis, stress response, protein metabolism and miraculin biosynthesis. This research provides insight into tissue-specific pathways that can be further studied within fruit physiology and postharvest shelf life to aid in implementing effective plant breeding programs. Knowing the tissue-specific function of fruit is essential for improving fruit quality, developing new varieties, identifying health benefits, and optimizing processing techniques.
Read More on PubMed -
Sweet-Tasting Natural Proteins Brazzein and Monellin: Safe Sugar Substitutes for the Food Industry.
- Date:
- Author: Novik TS  |  Koveshnikova EI  |  Kotlobay AA  |  Sycheva LP  |  Kurochkina KG  |  Averina OA  |  Belopolskaya MV  |  Sergiev PV  |  Dontsova OA  |  Lazarev VN  |  Maev IV  |  Kostyaeva MG  |  Eremeev AV  |  Chukina SI  |  Lagarkova MA  | 
This article presents the results of a comprehensive toxicity assessment of brazzein and monellin, yeast-produced recombinant sweet-tasting proteins. Excessive sugar consumption is one of the leading dietary and nutritional problems in the world, resulting in health complications such as obesity, high blood pressure, and cardiovascular disease. Although artificial small-molecule sweeteners widely replace sugar in food, their safety and long-term health effects remain debatable. Many sweet-tasting proteins, including thaumatin, miraculin, pentadin, curculin, mabinlin, brazzein, and monellin have been found in tropical plants. These proteins, such as brazzein and monellin, are thousands-fold sweeter than sucrose. Multiple reports have presented preparations of recombinant sweet-tasting proteins. A thorough and comprehensive assessment of their toxicity and safety is necessary to introduce and apply sweet-tasting proteins in the food industry. We experimentally assessed acute, subchronic, and chronic toxicity effects, as well as allergenic and mutagenic properties of recombinant brazzein and monellin. Our study was performed on three mammalian species (mice, rats, and guinea pigs). Assessment of animals' physiological, biochemical, hematological, morphological, and behavioral indices allows us to assert that monellin and brazzein are safe and nontoxic for the mammalian organism, which opens vast opportunities for their application in the food industry as sugar alternatives.
Read More on PubMed -
Effect of Regular Consumption of a Miraculin-Based Food Supplement on Taste Perception and Nutritional Status in Malnourished Cancer Patients: A Triple-Blind, Randomized, Placebo-Controlled Clinical Trial-CLINMIR Pilot Protocol.
- Date:
- Author: López-Plaza B  |  Gil Á  |  Menéndez-Rey A  |  Bensadon-Naeder L  |  Hummel T  |  Feliú-Batlle J  |  Palma-Milla S  | 
Taste disorders are common among cancer patients undergoing chemotherapy, with a prevalence ranging from 20% to 86%, persisting throughout treatment. This condition leads to reduced food consumption, increasing the risk of malnutrition. Malnutrition is associated not only with worse treatment efficacy and poor disease prognosis but also with reduced functional status and quality of life. The fruit of (Daniell), commonly known as miracle berry or miracle fruit, contains miraculin, a taste-modifying protein with profound effects on taste perception. The CLINMIR Protocol is a triple-blind, randomized, placebo-controlled clinical trial designed to evaluate the regular consumption of a food supplement containing a miraculin-based novel food, dried miracle berry (DMB), on the taste perception (measured through electrogustometry) and nutritional status (evaluated through the GLIM Criteria) of malnourished cancer patients under active antineoplastic treatment. To this end, a pilot study was designed with 30 randomized patients divided into three study arms (150 mg DMB + 150 mg freeze-dried strawberries, 300 mg DMB, or placebo) for three months. Throughout the five main visits, an exhaustive assessment of different parameters susceptible to improvement through regular consumption of the miraculin-based food supplement will be conducted, including electrical and chemical taste perception, smell perception, nutritional and morphofunctional assessment, diet, quality of life, the fatty acid profile of erythrocytes, levels of inflammatory and cancer-associated cytokines, oxidative stress, antioxidant defense system, plasma metabolomics, and saliva and stool microbiota. The primary anticipated result is that malnourished cancer patients with taste distortion who consume the miraculin-based food supplement will report an improvement in food taste perception. This improvement translates into increased food intake, thereby ameliorating their nutritional status and mitigating associated risks. Additionally, the study aims to pinpoint the optimal dosage that provides maximal benefits. The protocol adheres to the SPIRIT 2013 Statement, which provides evidence-based recommendations and is widely endorsed as an international standard for trial protocols. The clinical trial protocol has been registered at the platform for Clinical Trials (NCT05486260).
Read More on PubMed -
Miraculin-based sweeteners in the protein-engineering era: an alternative for developing more efficient and safer products.
- Date:
- Author: Maia RT  |  Silva ISDS  |  Fernandes de Souza A  |  Frazão NF  |  de Lima RM  |  Campos MA  | 
The current sweeteners available are very efficient in providing sweet taste. However, they are associated with several chronic diseases. Some glycoproteins, such as miraculins, are extremely interesting from a biotechnological point of view because they perform the bitter into sweet taste modifying function excellently, in addition to being safer as food. In contrast, purifying and synthesizing these proteins represents a major challenge for the food industry, as these proteins are large and complex molecules, which would make the final product expensive and economically unviable. In this context, emerging techniques from computational biology and molecular modelling have been promoting a remarkable revolution in protein bioengineering. Bioinspired peptides can provide many possibilities in sweeteners development through rational design. Once these peptides are smaller molecules than an entire protein, its synthesis on a large scale tends to be much easier and more economical, besides presenting a potential for better bioavailability in the organism. The techniques discussed here allow, through sophisticated pipelines and algorithms, to perform the rational design of mimetic peptides and with smaller size, which can carry out the activation of sweet taste of miraculins and to be more viable for industrial production. In this review, the premises and tools for the elaboration of synthetic peptides bioinspired in proteins with sweetening activity that mimic this action will be emphasized.Communicated by Ramaswamy H. Sarma.
Read More on PubMed -
Miraculin-like proteins (MLPs), members of the Kunitz trypsin inhibitor (KTI) family that are present in various plants, have been discovered to have a role in defending plants against pathogens. In this study, we identified a gene StMLP1 in potato that belongs to the KTI family. We found that the expression of StMLP1 gradually increases during Ralstonia solanacearum (R. solanacearum) infection. We characterized the promoter of StMLP1 as an inducible promoter that can be triggered by R. solanacearum and as a tissue-specific promoter with specificity for vascular bundle expression. Our findings demonstrate that StMLP1 exhibits trypsin inhibitor activity, and that its signal peptide is essential for proper localization and function. Overexpression of StMLP1 in potato can enhance the resistance to R. solanacearum. Inhibiting the expression of StMLP1 during infection accelerated the infection by R. solanacearum to a certain extent. In addition, the RNA-seq results of the overexpression-StMLP1 lines indicated that StMLP1 was involved in potato immunity. All these findings in our study reveal that StMLP1 functions as a positive regulator that is induced and specifically expressed in vascular bundles in response to R. solanacearum infection.
Read More on PubMed