Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • Hibiscus sabdariffa L. (roselle) is a medicinal and edible plant which rich in anthocyanins with potent antioxidant properties. To enhance the stability of roselle anthocyanins, they were encapsulated in nanocapsules composed of carboxymethyl chitosan (CMC), chitosan hydrochloride (CHC), and β-lactoglobulin (β-Lg). In vitro simulated digestion assays evaluated the impact of various core-to-wall ratios and β-Lg concentrations on the bioaccessibility of seven anthocyanins. Nanocapsules with a core-to-wall ratio of 1:2 and β-Lg at 10 mg/mL exhibited the highest encapsulation efficiency (EE). Cyanidin-3-glucoside had the highest EE, while cyanidin-3-sambubioside showed the outstanding retention rate. Furthermore, simulated digestion experiments combined with molecular docking revealed that peonidin-3-glucoside and petunidin-3-glucoside likely interact with and bind to the outer β-Lg layer of the nanocapsules, increasing their release during in vitro digestion. This study demonstrates that encapsulating roselle anthocyanins in CMC, CHC, and β-Lg nanocapsules significantly enhances their bioaccessibility.

    Read More on PubMed
  • Anthocyanin profiles of juices from blueberry (Vaccinium myrtillus L.) and different grape varieties (Vitis labrusca L. cv. Concord, Vitis vinifera L. cvs. Accent, Dunkelfelder, Dakapo, and GM 674-1) were characterized by ultra-high performance liquid chromatography (UHPLC) coupled to trapped ion mobility spectrometry-quadrupole time-of-flight tandem mass spectrometry (TIMS-QTOF-MS/MS). Ion mobility and collision cross section (CCS) values of over 50 structurally related anthocyanins based on delphinidin, cyanidin, petunidin, peonidin, and malvidin were determined. Relations between molecular mass, mobility values, and specific structural features were revealed. The mass-to-charge (m/z) ratio of the molecular ions (M) was found to be the major factor influencing anthocyanin ion mobilities, but structural characteristics also contributed to their variability. We were able to differentiate positional and geometrical isomers and certain epimers by their respective mobility values. For instance, whereas 3-O-hexosides (i.e., 3-O-glucosides and 3-O-galactosides) were separated by TIMS, epimers of 3-O-pentosides assessed could not be distinguished.

    Read More on PubMed
  • An efficient and environmentally friendly extraction method utilizing an ultrasonic-assisted natural deep eutectic solvent (UAE-NADES) was developed for the extraction of anthocyanins from Foex. A screening process was conducted to evaluate seven different NADESs, resulting in the selection of a high-efficiency NADES (choline chloride-glycerol (ChGly)). To analyze the influence of significant factors and their interactive effects on the total anthocyanin content (TAC), response surface methodology (RSM) was employed. Furthermore, the conditions of extraction were optimized to attain the most productive yield of total anthocyanin content. The theoretical optimal conditions were determined to be a liquid‒solid ratio of 34.46 mL/g, an extraction temperature of 322.79 K and an ultrasonic power of 431.67 W, under which the verification TAC value (3.682 ± 0.051 mg/g) was highly consistent with the theoretical value (3.690 mg/g). Seventeen anthocyanins were identified by UPLC‒MS/MS. The contents of the main anthocyanins peonidin-3,5--diglucoside, malvidin-3,5--diglucoside, malvidin-3--5--(6--coumaroyl)-diglucoside, and malvidin-3--(6---coumaroyl)-glucoside in the ChGly extracts were significantly higher than those in the acid‒alcohol extract. Stability assays showed that the stability of anthocyanins in ChGly is higher than that in acidified alcohol at higher temperature, pH and stronger illumination. In vitro antioxidant results showed that the antioxidant capacities of the compounds extracted through the use of UAE-NADES were higher than those extracted using acidified alcohol. Additionally, the thermal behavior of anthocyanin extracts was further characterized through DSC analysis, highlighting the influence of ChGly or acidic ethanol. The results indicate that UAE-NADES exhibits a significant effect on the extraction of anthocyanins from plant byproducts, suggesting that its potential for use in the food sector is considerable.

    Read More on PubMed
  • Sweet potatoes are rich in flavonoids and phenolic acids, showing incomparable nutritional and health value. In this investigation, we comprehensively analyzed the secondary metabolite profiles in the flesh of different-colored sweet potato flesh. We determined the metabolomic profiles of white sweet potato flesh (BS), orange sweet potato flesh (CS), and purple sweet potato flesh (ZS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CS vs. BS, ZS vs. BS, and ZS vs. CS comparisons identified a total of 4447 secondary metabolites, including 1540, 1949, and 1931 differentially accumulated metabolites. Among them, there were significant differences in flavonoids and phenolic acids. There were 20 flavonoids and 13 phenolic acids that were common differential metabolites among the three comparison groups. The accumulation of paeoniflorin-like and delphinidin-like compounds may be responsible for the purple coloration of sweet potato flesh. These findings provide new rationale and insights for the development of functional foods for sweet potatoes.

    Read More on PubMed
  • Differences in main nutritional components in relation to biomarkers of metabolites in purple rice grains at different fillings stages have not been determined previously. This study measured the contents of amino acids, several nutritional indicators, and mineral elements in purple rice grains at five stages following the filling stage. The results revealed that the amino acid, ascorbic acid, total sugar, carotenoid, vitamin B9, cyanidin-3-O-glucoside, peonidin 3-glucoside and seven minerals were highest in the final stage of grain filling. Citric acid, L-isoleucine, trigonelline, and L-glutamate are key metabolites in the metabolic pathway and exhibit strong correlations with various nutritional indicators. Hence, this research preliminarily suggested that trigonelline, L-isoleucine, L-glutamate, and citric acid could be potential biomarkers of nutritional components in purple rice grains during various postfilling stages.

    Read More on PubMed
  • Sweet potatoes () are highly profitable, contribute to food security, and their leaves rich in phytonutrients. This study examined the optimal leaf harvesting stage by harvesting newly formed leaves (leaves 1 to 5) to achieve the highest concentration of carotenoids, phenolic compounds, antioxidant properties and mineral content. Leaves of five purple-fleshed sweet potato genotypes '2019-11-2' and '2019-1-1', 'Purple-purple', and from the USA '08-21P' and '16-283P' were harvested based on tuber life cycle [vegetative 8 weeks after planting (VS-8WAP), tuber initiation (TIS-12WAP), and tuber maturation phases (TMS-16WAP)]. At the 8WAP stage, leaves of genotype '2019-11-2' had the highest concentrations of cyanidin-caffeoyl-sophoroside-glucoside (17.64 mg/kg), cyanidin-caffeoyl-feruloyl-sophoroside-glucoside (41.51 mg/kg), peonidin-caffeoyl-hydroxybenzoyl-sophoriside-glucoside (45.25 mg/kg), and peonidin caffeoyl-feruloyl-sophoriside-glucoside (24.47 mg/kg), as well as antioxidant scavenging activity. In contrast, 'Purple-purple' harvested at TIS-12WAP showed the highest concentration of caffeoylquinic acid derivatives. Zeaxanthin, lutein, all trans-β-carotene, and cis-β-carotene are the most abundant carotenoids in genotype '08-21P' at VS-8WAP. As a result, local genotypes '2019-11-2' harvested at 8WAP and 'Purple-purple' harvested at 12WAP are potential sources of anthocyanins and caffeoylquinic acid derivatives. Conversely, USA's genotype '08-21P' at the VS-8WAP stage is an excellent source of carotenoids. The leaves of USA's '08-21P' genotype and the local '2019-11-2' genotype at TMS-16WAP exhibited the highest content of Fe and Mn, respectively. The study identified the optimal leaf stage for consumption of leaves and for use as a functional ingredient.

    Read More on PubMed
  • The spines of Chinese red chestnut are red and the depth of their color gradually increases with maturity. To identify the anthocyanin types and synthesis pathways in red chestnut and to identify the key genes regulating the anthocyanin biosynthesis pathway, we obtained and analyzed the transcriptome and anthocyanin metabolism of red chestnut and its control variety with green spines at 3 different periods. GO and KEGG analyses revealed that photosynthesis was more highly enriched in green spines compared with red spines, while processes related to defense and metabolism regulation were more highly enriched in red spines. The analysis showed that the change in spine color promoted photoprotection in red chestnut, especially at the early growth stage, which resulted in the accumulation of differentially expressed genes involved in the defense metabolic pathway. The metabolome results revealed 6 anthocyanins in red spines. Moreover, red spines exhibited high levels of cyanidin, peonidin and pelargonidin and low levels of delphinidin, petunidin and malvidin. Compared with those in the control group, the levels of cyanidin, peonidin, pelargonidin and malvidin in red spines were significantly increased, indicating that the cyanidin and pelargonidin pathways were enriched in the synthesis of anthocyanins in red spines, whereas the delphinidin pathways were inhibited and mostly transformed into malvidin. During the process of flower pigment synthesis, the expression of the , , , , , and genes clearly increased, that of decreased obviously, and that of , and both increased and decreased. Notably, the findings revealed that the synthesized anthocyanin can be converted into anthocyanidin or epicatechin. In red spines, the upregulation of gene expression increases the corresponding anthocyanidin content, and the upregulation of the gene also promotes the conversion of anthocyanin to epicatechin. The transcription factors involved in color formation included 4 .

    Read More on PubMed
  • (Poly)phenols inhibit α-amylase by directly binding to the enzyme and/or by forming starch-polyphenol complexes. Conventional methods using starch as the substrate measure inhibition from both mechanisms, whereas the use of shorter oligosaccharides as substrates exclusively measures the direct interaction of (poly)phenols with the enzyme. In this study, using a chromatography-based method and a short oligosaccharide as the substrate, we investigated the detailed structural prerequisites for the direct inhibition of human salivary and pancreatic α-amylases by over 50 (poly)phenols from the (poly)phenol groups: flavonols, flavones, flavanones, flavan-3-ols, polymethoxyflavones, isoflavones, anthocyanidins and phenolic acids. Despite being structurally very similar (97% sequence homology), human salivary and pancreatic α-amylases were inhibited to different extents by the tested (poly)phenols. The most potent human salivary α-amylase inhibitors were luteolin and pelargonidin, while the methoxylated anthocyanidins, peonidin and petunidin, significantly blocked pancreatic enzyme activity. B-ring methoxylation of anthocyanidins increased inhibition against both human α-amylases while hydroxyl groups at C3 and B3' acted antagonistically in human salivary inhibition. C4 carbonyl reduction, or the positive charge on the flavonoid structure, was the key structural feature for human pancreatic inhibition. B-ring glycosylation did not affect salivary enzyme inhibition, but increased pancreatic enzyme inhibition when compared to its corresponding aglycone. Overall, our findings indicate that the efficacy of interaction with human α-amylase is mainly influenced by the type and placement of functional groups rather than the number of hydroxyl groups and molecular weight.

    Read More on PubMed
  • Pigmented rice, especially black rice, is gaining popularity as it is rich in antioxidants such as anthocyanins and γ-oryzanol. At present, knowledge about temporal control of biosynthesis and accumulation of antioxidants during grain development is limited. To address this, the accumulation patterns of anthocyanins and γ-oryzanol were assessed in two distinct black rice genotypes over the course of grain development, and the expression of known regulatory genes for anthocyanin biosynthesis was examined. The results indicated that total γ-oryzanol content increased continuously throughout grain development, while total anthocyanins peaked at dough stage (15 to 21 days after flowering) followed by a decline until grain maturity in both genotypes. However, the rate of decrease in anthocyanin content differed between genotypes, and a more prominent decline in cyanidin 3-O-glucoside (C3G) relative to peonidin 3-O-glucoside (P3G) was observed for both. Anthocyanin content was closely linked with the expression of key regulatory genes in the MBW (MYB-bHLH-WD40) complex. This improved knowledge of the genotype-specific biosynthesis (anthocyanins only) and accumulation patterns of anthocyanins and γ-oryzanol can inform subsequent research efforts to increase concentrations of these key antioxidants in black rice grains.

    Read More on PubMed
  • Grapes were packaged by different Poly (L-lactic acid)-based packaging films (PLTL-PLEL) and stored at 5 °C for 35 days to investigate the effects of equilibrium modified atmosphere packaging on the quality of "Kyoho" grapes during storage. Changes in physiochemical quality, antioxidant content and senescence of grapes were studied. Furthermore, UPLC-Q-TOF-MS/MS was used to observe and identify key factors influencing the variation of grape anthocyanins under different atmosphere conditions. Alterations in gas components and enzyme activities significantly impacted anthocyanin levels, highlighting oxygen concentration as the primary influence on total anthocyanin levels. The PLTL-PLEL50 packaging resulted in an approximate 5.7% lower weight loss and increased soluble solids by approximately 14.4%, vitamin C, total phenols and flavonoids reaching 60.2 mg/100 g, 8.4 mg/100 g and 7.2 mg/100 g, respectively. This packaging also preserved higher anthocyanin levels, with malvidin-3-glucoside and peonidin-3-glucoside at 0.55 μg/mL and 1.62 μg/mL, respectively, on the 35th day of storage.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!