Natural Science Hub Search function
Type your keywords and we will find the results

-
Laboratory and field efficacy of natural products against the invasive pest Halyomorpha halys and side effects on the biocontrol agent Trissolcus japonicus.
- Date:
- Author: Chierici E | Marchetti E | Poccia A | Russo A | Giannuzzi VA | Governatori L | Zucchi L | Rondoni G | Conti E |
The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is an invasive pest causing major economic losses to crops. Since its outbreaks in North America and Europe, H. halys has been controlled with synthetic pesticides. More sustainable methods have been proposed, including biocontrol and use of natural products. Here, we conducted laboratory and field investigations to evaluate organically registered products for their effectiveness against H. halys and their non-target effect on the egg parasitoid, Trissolcus japonicus (Hymenoptera: Scelionidae). In the laboratory, azadirachtin, orange oil, potassium salts of fatty acids, kaolin, basalt dust, diatomaceous earth, zeolite, sulphur formulations, calcium polysulfide, and mixtures of sulphurs plus diatomaceous earth or zeolite demonstrated higher lethality against H. halys nymphs compared to control. Calcium polysulfide, azadirachtin and sulphur achieved more than 50% mortality. All treatments except azadirachtin and kaolin had negative effects on T. japonicus, with mortality exceeding 80% for calcium polysulfide and sulphur. Field experiments were conducted in 2021 and 2022 in pear orchards. Diatomaceous earth alone or alternated with sulphur or calcium polysulfide provided similar H. halys control, when compared to farm strategies based mostly on neonicotinoid (acetamiprid) treatments. Implications for H. halys control in integrated pest management are discussed.
Read More on PubMed -
Efficacy of Biorational Insecticides and Entomopathogenic Fungi for Controlling Cassida vittata Vill. (Coleoptera: Chrysomelidae) in Sugar Beet Crops.
- Date:
- Author: El Aalaoui M | Rammali S | Bencharki B | Sbaghi M |
The sugar beet flea beetle, Cassida vittata Vill. (Coleoptera: Chrysomelidae), is a major pest in Morocco's sugar beet crops and is primarily controlled with chemical insecticides despite environmental concerns. Our aim was to assess the impact of three biorational insecticides (spinosad at 30-7.5 cc/hL, mineral oil at 2000-250 cc/hL, and potassium salts of fatty acids at 1500-375 cc/hL) and two entomopathogenic fungi (Alternaria murispora and Alternaria destruens applied at 1.0 × 10, 5.0 × 10, and 2.5 × 10 conidia mL) both individually and in combination on C. vittata adults. All treatments were conducted at 25 ± 1 °C, with mortality recorded over 10 days. Conidial germination was highest for A. murispora with mineral oil (98.4%). Alternaria destruens showed consistently high germination across treatments. At 100% concentration, A. murispora + mineral oil and A. destruens + mineral oil treatments achieved 96.67 and 92.00% mortality, respectively. Median survival times (MST) for A. murispora were 6.0 days at 100% concentration, increasing to 10.0 days at lower concentrations, while A. destruens had a consistent 10.0 days MST. LC for A. murispora was 1.3 × 10 conidia mL alone, increasing to 2.2 × 10 with spinosad, but remained 1.7 × 10 with potassium salts of fatty acids. For A. destruens, LC was 4.2 × 10 conidia mL alone, decreasing to 1.5 × 10 with mineral oil, and 3.1 × 10 with potassium salts of fatty acids. Combining A. murispora with mineral oil and potassium salts of fatty acids enhanced efficacy against C. vittata.
Read More on PubMed -
Thinking green: Insecticidal effect of biorational solutions against Triatoma pallidipennis Stal (Hemiptera: Triatominae).
- Date:
- Author: Vargas-Abasolo R | Rivera-Duarte JD | Almaraz-Valle VM | Mejia-Mandujano M | Aguilar-Marcelino L | Córdoba-Aguilar A |
The control of triatomine vectors depends almost exclusively on conventional insecticides. These compounds can, nevertheless, cause negative effects on environmental and human health as well as induce resistance in triatomines. Therefore, we need to look for more sustainable alternatives. Triatoma pallidipennis is one of the main chagasic vectors in Mexico. We evaluated the insecticidal effectiveness of two oils (neem and cinnamon), and two desiccants (potassium salts of fatty acids and diatomaceous earth), on 3rd instar nymphs of T. pallidipennis. The laboratory test involved direct exposure of the treatments to the insects. We found that diatomaceous earths caused 80 % mortality of nymphs after 30 days. Meanwhile, the cumulative mortality for the other treatments did not exceed 50 %. When applied to inert surfaces, the powder formulation of diatomaceous earth demonstrated greater effectiveness than the aqueous suspension. Thus, diatomaceous earth could be a promising alternative for an environmentally friendly control of triatomines.
Read More on PubMed -
Fatty acid potassium improves human dermal fibroblast viability and cytotoxicity, accelerating human epidermal keratinocyte wound healing in vitro and in human chronic wounds.
- Date:
- Author: Masunaga A | Kawahara T | Morita H | Nakazawa K | Tokunaga Y | Akita S |
Effective cleaning of a wound promotes wound healing and favours wound care as it can prevent and control biofilms. The presence of biofilm is associated with prolonged wound healing, increased wound propensity to infection, and delayed wound closure. Anionic potassium salts of fatty acids are tested with commonly used anionic surfactants, such as sodium laureth sulphate (SLES) and sodium lauryl sulphate/sodium dodecyl sulphate (SLS/SDS). The normal human dermal cells demonstrated significantly greater viability in fatty acid potassium, including caprylic acid (C8), capric acid (C10), lauric acid (C12), oleic acid (C18:1), and linoleic acid (C18:2), than in SLES or SLS after a 24-hour incubation. Cytotoxicity by LDH assay in a 5-minute culture in fatty acid potassium was significantly lower than in SLES or SLS. in vitro wound healing of human epidermal keratinocytes during the scratch assay in 24-hour culture was more significantly improved by fatty acid treatment than by SLES or SLS/SDS. In a live/dead assay of human epidermal keratinocytes, C8K and C18:1K demonstrated only green fluorescence, indicating live cells, whereas synthetic surfactants, SLES and SLS, demonstrated red fluorescence on staining with propidium iodide, indicating dead cells after SLES and SLS/SDS treatment. Potassium salts of fatty acids are useful wound cleaning detergents that do not interfere with wound healing, as observed in the scratch assay using human epidermal keratinocytes. As potassium salts of fatty acids are major components of natural soap, which are produced by natural oil and caustic potash using a saponification method, this may be clinically important in wound and peri-wound skin cleaning. In human chronic wounds, natural soap containing fatty acid potassium increased tissue blood flow based on laser speckle flowgraphs after 2 weeks (P < .05), in addition to removing the eschars and debris. Wound cleansing by natural soap of fatty acid potassium is beneficial for wound healing.
Read More on PubMed -
Re-evaluation of sodium, potassium and calcium salts of fatty acids (E 470a) and magnesium salts of fatty acids (E 470b) as food additives.
- Date:
- Author: | Younes M | Aggett P | Aguilar F | Crebelli R | Dusemund B | Filipič M | Frutos MJ | Galtier P | Gott D | Gundert-Remy U | Kuhnle GG | Leblanc JC | Lillegaard IT | Moldeus P | Mortensen A | Oskarsson A | Stankovic I | Waalkens-Berendsen I | Woutersen RA | Wright M | Boon P | Chrysafidis D | Gürtler R | Mosesso P | Parent-Massin D | Tobback P | Cascio C | Rincon AM | Lambré C |
The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of sodium, potassium and calcium salts of fatty acids (E 470a) and magnesium salts of fatty acids (E 470b) when used as food additives. In 1991, the Scientific Committee on Food (SCF) established a group acceptable daily intake (ADI) 'not specified' for the fatty acids (myristic-, stearic-, palmitic- and oleic acid) and their salts. The sodium, potassium, calcium and magnesium salts of fatty acids are expected to dissociate in the gastrointestinal tract to fatty acid carboxylates and their corresponding cations. There were no data on subchronic toxicity, chronic toxicity, reproductive and developmental toxicity of the salts of fatty acids. There was no concern for mutagenicity of calcium caprylate, potassium oleate and magnesium stearate. From a carcinogenicity study with sodium oleate, a no observed adverse effect level (NOAEL) could not be identified but the substance was considered not to present a carcinogenic potential. Palmitic- and stearic acid which are the main fatty acids in E 470a and E 470b were already considered of no safety concern in the re-evaluation of the food additive E 570. The fatty acid moieties of E 470a and E 470b contributed maximally for 5% to the overall intake of saturated fatty acids from all dietary sources. Overall, the Panel concluded that there was no need for a numerical ADI and that the food additives sodium, potassium, calcium and magnesium salts of fatty acids (E 470a and E 470b) were of no safety concern at the reported uses and use levels.
Read More on PubMed -
Laboratory evaluation of alternative control methods against the false tiger, Monosteira unicostata (Hemiptera: Tingidae).
- Date:
- Author: Sánchez-Ramos I | Pascual S | Marcotegui A | Fernández CE | González-Núñez M |
Monosteira unicostata is an important pest of almond tree in the Mediterranean region requiring control methods alternative to synthetic pesticides. The efficacy of kaolin, azadirachtin and potassium salts of fatty acids combined with thyme essential oil against adults and fourth instar nymphs of this tingid was evaluated in laboratory assays.
Read More on PubMed -
Effects of organic-farming-compatible insecticides on four aphid natural enemy species.
- Date:
- Author: Jansen JP | Defrance T | Warnier AM |
The toxicities of pyrethrins + rapeseed oil, pyrethrins + piperonyl butoxide (PBO), potassium salts of fatty acids and linseed oil were assessed in the laboratory on the parasitic wasp Aphidius rhopalosiphi (Destefani-Perez), the ladybird Adalia bipunctata (L.), the rove beetle Aleochara bilineata (Gyll.) and the carabid beetle Bembidion lampros (Herbst.). The methods selected were residual contact toxicity tests on inert and natural substrates.
Read More on PubMed -
Effects of a mixture of vegetable and essential oils and fatty acid potassium salts on Tetranychus urticae and Phytoseiulus persimilis.
- Date:
- Author: Tsolakis H | Ragusa S |
Laboratory trials were carried out to evaluate the toxicity and the influence of a commercial mixture of vegetal, essential oils, and potassium salts of fatty acids (Acaridoil 13SL) on the population growth rate (r(i)--instantaneous rate of increase) of two mite species, the phytophagous Tetranychus urticae Koch and the predator Phytoseiulus persimilis Athias-Henriot. A residue of 1.3 mg/cm(2) of pesticide solution was harmless for Ph. persimilis eggs, while a moderate mortality of eggs and of larvae from treated eggs of T. urticae, was observed (53.8%). The pesticide also caused a delay in the postembryonic development of the tetranychid. Moreover, 83.4% mortality was reported for treated females tetranychids and only 24.0% for Ph. persimilis females. The pesticide influenced negatively the population growth of T. urticae which showed a very low rate of increase (r(i)=0.07), compared to that obtained in the control (r(i)=0.68). The pesticide did not affect negatively the reproductive potential of Ph. persimilis (r(i)=0.54 and r(i)=0.57 for test and control, respectively). These results suggest a considerable acaricidal activity of potassium salts of fatty acids and caraway oil on T. urticae and a good selectivity on Ph. persimilis.
Read More on PubMed -
The movement of alpha-linolenic acid (C18:3, n-3) through the mitochondrial outer membrane to oxidation sites was studied in rat liver and compared with the movement of linoleic acid (C18:2, n-6) and oleic acid (C18:1, n-9). All differ in the degree of unsaturation, but have the same chain length and the same position of the first double bond when counted from the carboxyl end. The following results were obtained. (1) The overall beta-oxidation in total mitochondria was in the order C18:3, n-3 greater than C18:2, n-6 greater than C18:1, n-9, independent of the amount of albumin in the medium. (2) The rate of formation of acylcarnitine from acyl-CoA was higher with oleoyl-CoA than with linoleoyl-CoA, and remained very low with alpha-linolenoyl-CoA for all concentrations studied. (3) When the formation of acylcarnitines originated from fatty acids (as potassium salts) in a medium containing CoA and ATP, the conversion of alpha-linolenate was greater than that of linoleate, which in turn was greater than that of oleate. (4) Use of a more purified mitochondrial fraction, practically devoid of peroxisomes, did not modify the results obtained with alpha-linolenate. (5) alpha-Linolenoyl-CoA did not inhibit oxidation of labelled alpha-linolenate, whereas the other acyl-CoAs did. (6) Transfer to carnitine of all three fatty acids (as potassium salts) by carnitine palmitoyltransferase-I (CPT-I) was similarly inhibited by increasing concentrations of malonyl-CoA. (7) On using a fraction containing mitochondrial outer membranes, the formation of acylcarnitines from potassium salts of fatty acids was qualitatively and quantitatively similar to that found with whole mitochondria. (8) Our observations show that alpha-linolenoyl-CoA synthesized other than in the mitochondria cannot be used to any great extent by the mitochondria due to its configuration. However when added as the unactivated form, alpha-linolenate appears to be very quickly oxidized, but should first be activated by acyl-CoA synthetase in the mitochondrion itself. Then it is rapidly channelled to CPT-I. These enzymic sites are probably close together in the mitochondrial outer membrane. The different behaviour of the alpha-linolenic group compared with the other acyl groups in the studied pathway can be explained by a different spatial arrangement due to the number and position of the double bonds.
Read More on PubMed