Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well-characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG → TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers. Cell culture addition of the ribonucleotide reductase inhibitor thymidine increases the mutation frequency in nuclear DNA and leads to disruption of mitochondrial metabolism. Interestingly, this effect is counteracted by the addition of deoxycytidine. Finally, screening for the loss of hydrogen bonds detecting CG → TA transition in RAS gene of 135 patients with colorectal cancer confirmed the clinical relevance of this process. All together, these data demonstrate that fluctuation of intracellular dNTP pool alters the nuclear DNA and mitochondrial metabolism.

    Read More on PubMed
  • Despite advancements in treatment of sickle cell disease (SCD), hydroxyurea, a ribonucleotide reductase inhibitor, remains the cornerstone of therapy. While its primary effect is the elevation of fetal hemoglobin (HbF), hydroxyurea's mechanisms of action are multifaceted. Hydroxyurea (HU) reduces leukocyte and platelet counts, decreases the expression of endothelial adhesion molecules CD36 and CD49d, and increases nitric oxide and cyclic nucleotide levels, which may facilitate vascular dilation and further HbF induction. Numerous studies have demonstrated that hydroxyurea therapy reduces the frequency of painful episodes, acute chest syndrome, and the need for erythrocyte transfusions and hospitalizations. Long-term use of hydroxyurea leads to reduced morbidity and mortality. Hydroxyurea should be initiated in children from 9 months of age, including asymptomatic individuals, and is recommended for adults experiencing pain crises that significantly interfere with daily activities or quality of life, as well as those with severe or recurrent vaso-occlusive crises, ACS, or severe symptomatic anemia. Hydroxyurea is not recommended during pregnancy or lactation due to potential teratogenic effects and transfer into breast milk. However, its use may be considered in high-risk patients, particularly during the second and third trimesters. Concerns about secondary tumor development have not been substantiated in long-term follow-up studies. Alternative therapies, including L-glutamine, crizanlizumab, and voxelotor, are not presently approved or available for clinical use in Europe.

    Read More on PubMed
  • Hydroxyurea (HU), also known as hydroxycarbamide, is an oral ribonucleotide reductase inhibitor. In 1999, the United States Food and Drug Administration (FDA) approved HU for the treatment of sickle cell disease (SCD). Since then, it has become the cornerstone in the management of SCD patients, helping to reduce vaso-occlusive crises, acute chest syndrome, the need for blood transfusions, hospitalizations and mortality. There is considerable variability among individuals in HU pharmacokinetic (Pk) parameters that can influence treatment efficacy and toxicity. The objective of this work is part of a clinical study aimed at investigating HU Pk and determining the optimal sampling time to estimate the Area Under the Curve (AUC) in SCD patients. HU plasma concentration in 80 patients at various time points (2, 4, 6, 24 h) following a 48-h drug washout was quantified using High-Pressure Liquid Chromatography (HPLC) coupled with an ultraviolet (UV) detection method previously described in the literature and adapted to new conditions with partial modifications. The mean HU administered dose was 19.5 ± 5.1 mg/kg (range: 7.7-37.5 mg/kg). The median AUC quantified in plasma patients was 101.3 mg/L/h (Interquartile Range (IQR): 72.5-355.9) and it was not influenced by the weight-based dose. However, there was a strong positive correlation between AUC and Body Mass Index (BMI) as well as dose per Body Surface Area (BSA). Along with a three-point approach for AUC determination present in the literature, we show results obtained from a four-point sampling strategy, which is more useful and effective for better optimizing dose escalation to the maximum tolerated dose (MTD). Moreover, we observed that most patients achieved the maximum HU plasma concentration two hours after drug administration, regardless of age differences. HU treatment, which represents a milestone in the treatment of SCD due to its ability to reduce disease complications and improve patients' quality of life, requires careful monitoring to optimize the individual dose for saving potential side effects and/or adverse events.

    Read More on PubMed
  • Ribonucleotide Reductase (RNR) is a rate-limiting enzyme in the production of deoxyribonucleoside triphosphates (dNTPs), which are essential substrates for DNA repair after radiation damage. We explored the radiosensitization property of RNR and investigated a selective RRM2 inhibitor, 3-AP, as a radiosensitizer in the treatment of metastatic pNETs. We investigated the role of RNR subunit, RRM2, in pancreatic neuroendocrine (pNET) cells and responses to radiation in vitro. We also evaluated the selective RRM2 subunit inhibitor, 3-AP, as a radiosensitizer to treat pNET metastases in vivo. Knockdown of RNR subunits demonstrated that RRM1 and RRM2 subunits, but not p53R3, play significant roles in cell proliferation. RRM2 inhibition activated DDR pathways through phosphorylation of ATM and DNA-PK protein kinases but not ATR. RRM2 inhibition also induced Chk1 and Chk2 phosphorylation, resulting in G1/S phase cell cycle arrest. RRM2 inhibition sensitized pNET cells to radiotherapy and induced apoptosis in vitro. In vivo, we utilized pNET subcutaneous and lung metastasis models to examine the rationale for RNR-targeted therapy and 3-AP as a radiosensitizer in treating pNETs. Combination treatment significantly increased apoptosis of BON (human pNET) xenografts and significantly reduced the burden of lung metastases. Together, our results demonstrate that selective RRM2 inhibition induced radiosensitivity of metastatic pNETs both in vitro and in vivo. Therefore, treatment with the selective RRM2 inhibitor, 3-AP, is a promising radiosensitizer in the therapeutic armamentarium for metastatic pNETs.

    Read More on PubMed
  • The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.

    Read More on PubMed
  • Aberrant expression of histone deacetylases (HDACs) and ribonucleotide reductase (RR) enzymes are commonly observed in various cancers. Researchers are focusing on these enzymes in cancer studies with the aim of developing effective chemotherapeutic drugs for cancer treatment. Targeting both HDAC and RR simultaneously with a dual HDAC/RR inhibitor has exhibited enhanced effectiveness compared to monotherapy in cancer treatment, making it a promising strategy.

    Read More on PubMed
  • Hydroxyurea (HU), an anti-metabolite ribonucleotide reductase inhibitor, is commonly used to treat several myeloproliferative disorders, including polycythemia vera. However, patients receiving long-term treatment with HU may experience a variety of cutaneous side effects, with non-melanoma skin cancers (NMSCs) emerging as the most challenging and destructive. HU-induced carcinogenesis can be attributed to both the drug's mutagenic potential and impaired DNA repair following damage by external triggers such as ultraviolet light. We report a unique case of multiple aggressive NMSCs distributed within sun-exposed areas in an 81-year-old woman receiving chronic therapy with HU for 15 years. The case draws the clinician's attention to the increased incidence of NMSCs in this population and highlights the need for regular dermatologic monitoring. We also elaborate relevant insights and recommendations to assist healthcare providers in managing HU-related NMSCs development and progression.

    Read More on PubMed
  • RNA polymerase II transcription elongation directs an intricate pattern of histone modifications. This pattern includes a regulatory cascade initiated by the elongation factor Rtf1, leading to monoubiquitylation of histone H2B, and subsequent methylation of histone H3 on lysine 4. Previous studies have defined the molecular basis for these regulatory relationships, but it remains unclear how they regulate gene expression. To address this question, we investigated a drug resistance phenotype that characterizes defects in this axis in the model eukaryote (fission yeast). The mutations caused resistance to the ribonucleotide reductase inhibitor hydroxyurea (HU) that correlated with a reduced effect of HU on dNTP pools, reduced requirement for the S-phase checkpoint, and blunting of the transcriptional response to HU treatment. Mutations in the C-terminal repeat domain of the RNA polymerase II large subunit Rpb1 led to similar phenotypes. Moreover, all the HU-resistant mutants also exhibited resistance to several azole-class antifungal agents. Our results suggest a novel, shared gene regulatory function of the Rtf1-H2Bub1-H3K4me axis and the Rpb1 C-terminal repeat domain in controlling fungal drug tolerance.

    Read More on PubMed
  • Cancer cells grown in 3D spheroid cultures are considered more predictive for clinical efficacy. The marine natural product dragmacidin D induces apoptosis in MDA-MB-231 and MDA-MB-468 triple-negative breast cancer (TNBC) spheroids within 24 h of treatment while showing no cytotoxicity against the same cells grown in monolayers and treated for 72 h. The IC for cytotoxicity based on caspase 3/7 cleavage in the spheroid assay was 8 ± 1 µM in MDA-MB-231 cells and 16 ± 0.6 µM in MDA-MB-468 cells at 24 h. No cytotoxicity was seen at all in 2D, even at the highest concentration tested. Thus, the IC for cytotoxicity in the MTT assay (2D) in these cells was found to be >75 µM at 72 h. Dragmacidin D exhibited synergy when used in conjunction with paclitaxel, a current treatment for TNBC. Studies into the signaling changes using a reverse-phase protein array showed that treatment with dragmacidin D caused significant decreases in histones. Differential protein expression was used to hypothesize that its potential mechanism of action involves acting as a protein synthesis inhibitor or a ribonucleotide reductase inhibitor. Further testing is necessary to validate this hypothesis. Dragmacidin D also caused a slight decrease in an invasion assay in the MDA-MB-231 cells, although this failed to be statistically significant. Dragmacidin D shows intriguing selectivity for spheroids and has the potential to be a treatment option for triple-negative breast cancer, which merits further research into understanding this activity.

    Read More on PubMed
  • Elevated levels of reactive oxygen species (ROS) reduce replication fork velocity by causing dissociation of the TIMELESS-TIPIN complex from the replisome. Here, we show that ROS generated by exposure of human cells to the ribonucleotide reductase inhibitor hydroxyurea (HU) promote replication fork reversal in a manner dependent on active transcription and formation of co-transcriptional RNA:DNA hybrids (R-loops). The frequency of R-loop-dependent fork stalling events is also increased after TIMELESS depletion or a partial inhibition of replicative DNA polymerases by aphidicolin, suggesting that this phenomenon is due to a global replication slowdown. In contrast, replication arrest caused by HU-induced depletion of deoxynucleotides does not induce fork reversal but, if allowed to persist, leads to extensive R-loop-independent DNA breakage during S-phase. Our work reveals a link between oxidative stress and transcription-replication interference that causes genomic alterations recurrently found in human cancer.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!