Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • The aims of this study are the phytochemical exploration and food valorization of L. () and Raddi () from the Rabat, Morocco. Gas chromatography (GC) and high-performance liquid chromatography (HPLC) were used to analyze the chemical composition of the oils extracted from both species by soxhlet and maceration. Moreover, physicochemical characteristics such as lipid quality indexes such as thrombogenic index (TI), atherogenic index (AI), oxidation susceptibility (OS), and calculated oxidability (Cox) were determined. These characteristics included percentage acidity, peroxide, saponification, iodine, specific extinction values, chlorophyll, and carotenoid pigments. As results, the oil yields varied from 7% () to 13% (). In addition, unsaturated fatty acids represented the major fraction for (79%) and (81%). However, contains more saturated fatty acids (20%) than (16%) with a predominance of linoleic acid (59.53% and 55%, C18,2), oleic acid (19.29% and 21.69%, C18,1), and palmitic acid (12.56% and 15.48%, C16,0) in and , respectively. Moreover, the main sterols are -sitosterol followed by campesterol and then -5-avenasterol, while -sitosterol varies according to the species and the extraction method. Results revealed also that campesterol is influenced by the extraction results in a content of 179.66 mg/kg (soxhlet) and 63.48 mg/kg (maceration) for , while yeilds concentrations of 170 mg/kg and 138 mg/kg, then -5-avenasterol, which present with (117 mg/kg and 136 mg/kg), (34 mg/kg and 80 mg/kg) of the total amount of sterols for the oils extracted by soxhlet and maceration, respectively. In addition, there are favorable physicochemical properties for all oils, such as chlorophylls (0.4 to 0.8 mg/kg) and carotenoids (0.7 to 2 mg/kg). However, further investigations are needed to determine other chemical compounds of both extracts as well as to evaluate their biological and health benefits.

    Read More on PubMed
  • Growing evidence indicates that the intake of trans fatty acids (TFAs) increases the risk of numerous diseases, such as cardiovascular diseases. Recently, our group found that certain natural sulfur compounds (allyl isothiocyanate [AITC] and diallyl disulfide [DADS]) promote cis to trans isomerization of fatty acid esters during heat treatment. However, little information is available on the fatty acid isomerization with them. In this study, we investigated the effects of oxygen and α-tocopherol (antioxidant) on isomerization of oleic acid (18:1) methyl ester (OA-ME) in the presence of AITC and DADS. Furthermore, the effect of the simultaneous use of AITC and DADS was evaluated. Our results indicate that oxygen enhances the AITC-induced trans isomerization, and DADS was found to promote trans isomerization but inhibit AITC-induced trans isomerization during heating. Both AITC- and DADS-induced trans isomerization were inhibited by α-tocopherol. These results indicate that the trans isomerization of fatty acids induced by sulfur compounds can be controlled by devising a cooking process and the food ingredients used together.

    Read More on PubMed
  • Two important plant enzymes are 4-hydroxyphenylpyruvate dioxygenase (HPPD; EC 1.13.11.27), which is necessary for biosynthesis of plastoquinone and tocopherols, and phytoene dehydrogenase (PDS; EC 1.3.99.26), which plays an important role in colour rendering. Dual-target proteins that inhibit pigment synthesis will prevent resistant weeds and improve the spectral characteristics of herbicides. This study introduces virtual screening of pharmacophores based on the complex structure of the two targets. A three-dimensional database was established by screening 1,492,858 compounds based on the Lipinski principle. HPPD&PDS dual-target receptor-ligand pharmacophore models were then constructed, and nine potential dual-target inhibitors were obtained through pharmacophore modeling, molecular docking, and molecular dynamics simulations. Ultimately, ADMET prediction software yielded three compounds with high potential as dual-target herbicides. The obtained nine inhibitors were stable when combined with both HPPD and PDS proteins. This study offers guidance for the development of HPPD&PDS dual-target inhibitors with novel skeletons.

    Read More on PubMed
  • Superlong MOF-74-type micro/nanofibers, which have aspect ratios much higher than 200, are synthesized via nanoparticulate MOF-mediated recrystallization. Co-MOF-74 microfibers have high crystallinity, whereas Co-MOF-74-II nanofibers are composed of nanocrystals and amorphous phases, even though they have nanofibrous morphology. Both MOFs consist of plenty of micropores with diameters in the range of 1.0 to 2.0 nm, and they exhibit high thermal stability with a decomposition temperature higher than 260.0 °C. The MOFs are demonstrated for selective absorption of some vitamins including riboflavin, folic acid, and 5-methyltetrahydrofolate. Co-MOF-74-II nanofibers can efficiently absorb riboflavin and folic acid from their aqueous solution with absorption percentages approaching 90.0%, and they have enhanced capability for absorbing tocopherol in methanol. The micro/nanofibrous morphology, together with the capability for selective vitamin absorption, makes the novel MOFs highly promising for applications in micro-solid-phase extraction.

    Read More on PubMed
  • Acrylamide is formed during heating of starchy foods at high temperature and induces reproductive toxicity. Our study is designed to evaluate the chemical constitution and anti-infertility effect of Lycium shawii seeds extract on female rats. Nutritional profile was estimated, and major active compounds were isolated and identified. Biological evaluation of Lycium shawii extract on female rats was performed and measured by prolactin, follicular stimulating hormone, luteinizing hormone, estradiol, progesterone, tumor necrosis factor-α, interleukin-6, heme oxygenase-1, nuclear respiratory factor-2, malondialdehyde, glutathione, DNA fragmentation and ovarian architecture parameters. Data revealed that presence of ɤ-tocopherol, vitamin C, magnesium and thirty-eight bioactive compounds in the fractions of Lycium shawii. Major constituents from GC/MS, were 9, 12-octadecadienoic acid (Z, Z), methyl ester, 2,7-Octadiene-1,6-diol and 2,6-dimethyl hydroxy linalool but further five compounds (i.e. lupenone, betulin, lupeol acetate, stigmasterol and β-sitosterol-D-glucoside) were isolated and identified. Treatment of rats with the seeds extract post acrylamide administration ameliorated female sex hormones, oxidative stress, inflammation, DNA damage, and ovarian structure. In conclusion, Lycium shawii petroleum ether seeds fraction may be considered as a nutraceutical agent for improving infertility disorders, oxidative stress and inflammation due to its richness with biologically active phenolic and flavonoids compounds.

    Read More on PubMed
  • Food allergy can be life-threatening and often develops early in life. In infants and children, loss-of-function mutations in skin barrier genes associate with food allergy. In a mouse model with skin barrier mutations (Flakey Tail, FT+/- mice), topical epicutaneous sensitization to a food allergen peanut extract (PNE), an environmental allergen Alternaria alternata (Alt) and a detergent induce food allergy and then an oral PNE-challenge induces anaphylaxis. Exposures to these allergens and detergents can occur for infants and children in a household setting. From the clinical and preclinical studies of neonates and children with skin barrier mutations, early oral exposure to allergenic foods before skin sensitization may induce tolerance to food allergens and thus protect against development of food allergy. In the FT+/- mice, oral food allergen prior to skin sensitization induce tolerance to food allergens. However, when the skin of FT+/- pups are exposed to a ubiquitous environmental allergen at the time of oral consumption of food allergens, this blocks the induction of tolerance to the food allergen and the mice can then be skin sensitized with the food allergen. The development of food allergy in neonatal FT+/- mice is mediated by altered skin responses to allergens with increases in skin expression of interleukin 33, oncostatin M and amphiregulin. The development of neonate food allergy is enhanced when born to an allergic mother, but it is inhibited by maternal supplementation with α-tocopherol. Moreover, preclinical studies suggest that food allergen skin sensitization can occur before manifestation of clinical features of atopic dermatitis. Thus, these parameters may impact design of clinical studies for food allergy, when stratifying individuals by loss of skin barrier function or maternal atopy before offspring development of atopic dermatitis.

    Read More on PubMed
  • Walnut oil is an edible oil with high nutritional value, and the roasting process influences its quality and flavor. This study aimed to investigate the effects of roasting on the fatty acid composition, bioactive compounds (tocopherols, polyphenols, and phytosterols), and antioxidant capacity of walnut oil. Additionally, the aroma compounds and sensory characteristics were evaluated to comprehensively assess the variations in walnut oil after roasting. Roasting resulted in no notable impact on the fatty acid composition of walnut oil but increased the content of tocopherols and polyphenols in walnut oil, increasing its antioxidant capacity. Heavy roasting (160°C/20 min) reduced the phytosterol content in walnut oil by 2.3%. In total, 146 volatile compounds were detected in both cold-pressed and roasted walnut oil using headspace solid-phase microextraction-gas chromatography-mass spectrometry, and 32 key aroma compounds were identified. Aromatic aldehydes, aliphatic aldehydes, and heterocyclic compounds significantly contributed to fragrant walnut oil. Furthermore, the principal component analysis based on quality characteristics and sensory evaluation indicated that moderate roasting (130°C/20 min, 130°C/30 min, and 160°C/10 min) provided walnut oil with a sweet, nutty, and roasted aroma, as well as high levels of linoleic acid, phytosterols, and γ-tocopherol. Although heavy roasting (160°C/15 min and 160°C/20 min) enhanced the antioxidant capacities of walnut oils due to high levels of polyphenols, the oils exhibited an unpleasant burnt aroma. This study showed that roasting promoted the quality and flavor of walnut oil, and moderate conditions endowed walnut oil with a characteristic-rich flavor while maintaining excellent quality.

    Read More on PubMed
  • Fenugreeks (Trigonella L. spp.), belonging to the legume family (Fabaceae), are well-known multipurpose crops that their materials are currently received much attention in the pharmaceutical and food industries for the production of healthy and functional foods all over the world. Iran is one of the main diversity origins of this valuable plant. Therefore, the aim of the present study was to explore vitamins, minerals, and fatty acids profile, proximate composition, content of diosgenin, trigonelline, phenolic acids, total carotenoids, saponins, phenols, flavonoids, and tannins, mucilage and bitterness value, and antioxidant activity of the seed of thirty populations belonging to the ten different Iranian Trigonella species.

    Read More on PubMed
  • Pseudomonas aeruginosa (P. aeruginosa) typically forms biofilms in vivo, which exhibit high resistance and complicate eradication efforts. Additionally, persistent inflammation and excessive oxidative stress can lead to severe lung dysfunction, facilitating bacterial colonization and infection. Herein, we prepared oil-in-water (O/W) nanoemulsions (TD-αT NEs) by using PEG-block-PCL and α-tocopherol to encapsulate tobramycin (TOB). To enhance TOB's drug load, a hydrophobic ion pair (TDIP) composed of TOB and docosahexaenoic acid (DHA) was pre-prepared. TD-αT NEs was not only easily prepared and aerosolized, but stable in both physics and chemistry. The negatively charged TD-αT NEs facilitated penetration through mucus, reaching infection sites. Subsequently, TD-αT NEs permeated biofilms due to their small size and released drugs via lipase-triggered carrier dissociation, aiding in eradicating internal bacteria within biofilms (with a 16-fold reduction in CFU vs. free TOB group). TD-αT NEs simultaneously exerted superior anti-inflammatory effects, reducing levels of pro-inflammatory cytokines (NO, IL-6, IL-8, and TNF-α) while increasing the level of anti-inflammatory cytokine (IL-10). It was achieved through the upregulation of PPAR-γ and downregulation of NF-κB signaling, thus mitigating the lung damage. In addition, TD-αT NEs demonstrated strong antioxidant activity, alleviating the oxidative stress induced by P. aeruginosa. Notably, when administered via inhalation, TD-αT NEs significantly reduced the lung bacterial burden, lung inflammation, and oxidative stress in vivo compared to TOB solution. TD-αT NEs could prove beneficial in treating chronic pulmonary infections induced by P. aeruginosa through a comprehensive strategy, specifically enhancing biofilm eradication, reducing inflammation, and alleviating oxidative stress.

    Read More on PubMed
  • Cerium oxide nanoparticles (CeO2), as a metal oxide nanomaterial, are increasingly used for various industrial and biomedical applications. Although their cytotoxicity to bacteria and the associated mechanisms have attracted particular attention, the mechanisms behind their antifungal effects have remained unclear. This study investigated the antifungal properties of CeO2, focusing on Aspergillus oryzae. CeO2 inhibited fungal spore germination on solid substrates, and the effect was fungistatic rather than fungicidal. CeO2 inhibited fungal growth, especially under UV irradiation, and induced reactive oxygen species (ROS) production. Tocopherol reduced the intracellular ROS levels and the growth-inhibitory effects of CeO2, suggesting that ROS are involved in these growth-inhibitory effects. Transcriptomic analysis revealed upregulated expression of genes related to phospholipases and phosphate metabolism. CeO2 affected phosphate ion concentration in the medium, potentially influencing cellular responses. This research provided valuable insights into the antifungal effects of CeO2 application, which differ from those of conventional photocatalysts like TiO2.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!