Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • Considering the stricter European regulations for chemical pesticides (e.g. abolishment of the use of chemical soil fumigation products, such as methyl bromide), the need for more sustainable plant protection products is strongly increasing. In this research, Product X, an innovative mixture of bio-nematicidal compounds was developed and evaluated for efficacy. Product X showed a direct nematicidal effect against the root-knot nematode . In pot trials with tomato plants infected with , Product X treatment lead to a significant reduction in nematode-induced gall formation. mRNA-sequencing indicated alterations in phytohormone levels and ROS-metabolism in tomato roots upon treatment with Product X, which was subsequently biochemically validated. Increased levels of abscisic acid and peroxidase activity seem to be the main factors in the response of tomato plants to Product X. Long-term administration of Product X did not yield negative effects on tomato growth or yield. In conclusion, Product X provides a new interesting mix of bio-active compounds in the combat against root-knot nematodes.

    Read More on PubMed
  • Molybdenum (Mo) is a crucial microelement for both, humans and plants. The use of agronomic biofortification techniques can be an alternative method to enhance Mo content in vegetables. Concomitantly, arbuscular mycorrhizal fungi (AMF) application is a valuable strategy to enhance plant performances and overcome plant abiotic distresses such as microelement overdose. The aim of this research was to estimate the direct and/or indirect effects of Mo supply at four doses [0.0, 0.5 (standard dose), 2.0 or 4.0 μmol L], alone or combined with AMF inoculation, on plant performances. In particular, plant height and first flower truss emission, productive features (total yield, marketable yield and average marketable fruit weight) and fruit qualitative characteristics (fruit dry matter, soluble solids content, titratable acidity, ascorbic acid, lycopene, polyphenol, nitrogen, copper, iron and molybdenum) of an established cherry tomato genotype cultivated in soilless conditions were investigated. Moreover, proline and malondialdehyde concentrations, as well as Mo hazard quotient (HQ) in response to experimental treatments were determined. A split-plot randomized experimental block design with Mo dosages as plots and +AMF or -AMF as sub-plots was adopted. Data revealed that AMF inoculation enhanced marketable yield (+50.0 %), as well as some qualitative traits, such as fruit soluble solids content (SSC) (+9.9 %), ascorbic acid (+7.3 %), polyphenols (+2.3 %), and lycopene (+2.5 %). Molybdenum application significantly increased SSC, polyphenols, fruit Mo concentration (+29.0 % and +100.0 % in plants biofortified with 2.0 and 4.0 μmol Mo L compared to those fertigated with the standard dose, respectively) and proline, whereas it decreased N (-25.0 % and -41.6 % in plants biofortified with 2.0 and 4.0 μmol Mo L compared to those fertigated with the standard dose, respectively). Interestingly, the application of AMF mitigated the detrimental effect of high Mo dosages (2.0 or 4.0 μmol L). A pronounced advance in terms of plant height 45 DAT, fruit lycopene concentration and fruit Fe, Cu and Mo concentrations was observed when AMF treatment and Mo dosages (2.0 or 4.0 μmol Mo L) were combined. Plants inoculated or not with AMF showed an improvement in the hazard quotient (HQ) in reaction to Mo application. However, the HQ - for a consumption of 200 g day of biofortified cherry tomato - remained within the safety level for human consumption. This study suggests that Mo-implementation (at 2.0 or 4.0 μmol L) combined with AMF inoculation could represent a viable cultivation protocol to enhance yield, produce premium quality tomato fruits and, concomitantly, improve Mo dose in human diet. In the light of our findings, further studies on the interaction between AMF and microelements in other vegetable crops are recommended.

    Read More on PubMed
  • India is renowned for its mango diversity, with more than 1000 genotypes reported. However, the Himalayan plains bear some elite genotypes which supposed to bear high postharvest value, the systemic postharvest study of which is yet to be attempted. The aim of present study is to evaluate the postharvest quality and ripening behviour of these important genotypes. Thus, 15 un-explored mango genotypes of this region were selected and evaluated for ripening behaviour and detailed postharvest profiling internal (total phenolic and total flavonoid content), nutritional attributes (Brix: acid ratio, total carotenoid concentration, ascorbic acid content and antioxidant activity), sensory evaluation, fruit softening enzymes (polygalactouronase, pectin methylesterase and lipoxygenase), shelf life attributes (respiration rate, physiological loss in weight and storage life in days) external attributes (fruit weight, fruit firmness, peel thickness, fruit shape and dry seed weight) and mineral contents (Calcium, potassium and phosphorous) under ambient storage (25 ± 4 °C and 65 ± 5 % RH). The results revealed that the highest total flavonoid content (682.40 μg g), ascorbic acid (46.88 mg 100 g) and antioxidant activity (4.84 μmol TE g) exhibited by 'Sukul'. The total phenolic content was recorded as the highest in 'Safed Malda' (510.42 μg GAE g-1 FW), and total carotenoid concentration was recorded as the highest in 'Sipiya' (7.30 mg 100 g-1) 'Zardalu' (7.04 mg 100 g-1) and 'Mithua' (6.98 mg 100 g-1). Interestingly, genotypes such as 'Sukul', Sipiya' and 'Krishna Bhog 'exhibited a 4-5 days higher storage life than other selected genotypes. Screened genotypes exhibited a high diversity of nutritional and biochemical contents. The results of this study bear practical utility for research (quality improvement programme) and the processing industry.

    Read More on PubMed
  • The effects of γ-aminobutyric (GABA) on enzymatic browning, storage quality, membrane and reactive oxygen species (ROS) metabolism in fresh-cut stem lettuce were investigated. The results illustrated that GABA treatment delayed browning degree, polyphenol oxidase (PPO) activity and the expression of LsPPO. Meanwhile, higher chlorophyll and ascorbic acid contents were exhibited in GABA-treated stem lettuce, as well as the slower microbial propagation. Further investigation revealed that exogenous GABA application declined malondialdehyde content, electrolyte leakage and the enzyme activities of membrane metabolism, and the expression levels of related genes were also downregulated. In addition, GABA treatment scavenged ROS and strengthened the enzyme activities of ROS metabolism, as well as the expression levels of corresponding genes. Taken together, these findings implied that the repressed enzymatic browning and microbial propagation in GABA-treated stem lettuce were due to the inhibition of ROS accumulation, enhancement of membrane stability and increased resistance to oxidation.

    Read More on PubMed
  • Abiraterone acetate (ATA) is an FDA-approved prodrug that exerts its effects by irreversibly inhibiting the enzymatic activities of 17α-hydroxylase and C17,20-lyase, which are responsible for testosterone production, particularly. Drug-DNA interaction studies are conducted using various methods. In this study, CuNCs were used as a fluorescent probe for the first time to investigate drug-DNA interactions. Additionally, a new synthesis was developed for copper nanoclusters coated with phenylalanine (Phe). Ascorbic acid served as the reducing agent, while Phe was used as a surface functionalizing and stabilizing agent. Phe/CuNCs were characterized using various techniques including TEM, DLS, XPS, UV-Vis spectroscopy, and fluorescence spectroscopy. Optimization studies were conducted for synthesis parameters such as ascorbic acid concentration, Phe concentration, incubation time, and incubation temperature. This new synthesis method offers various advantages such as easy synthesis procedure, short synthesis time, and compatibility with green chemistry principles. Phe/CuNCs were used as a fluorescent probe for ATA-DNA interactions. The binding constant (K) between ATA and DNA was calculated as 1.03 × 10. Furthermore, thermodynamic studies indicated that the effective forces involved in ATA-DNA interaction are Van der Waals and hydrogen bonding.

    Read More on PubMed
  • Metal core and dielectric shell nanoparticles (NPs) have garnered considerable attention for their multifaceted properties and extensive applications across diverse fields of nanoscience and nanotechnology. However, a literature gap exists regarding the impact of assembled metallic nanostar cores within a single shell, particularly concerning surface-enhanced Raman scattering (SERS) and electrochemical sensing. In this study, we have demonstrated the better performance of assemblies of gold nanostars (AuNSs) enclosed in single silica shell for SERS enhancement and electrocatalytic activity, particularly in the fields of ascorbic acid (AA) and glucose sensing. We have devised a method to isolate and passivate nanostar assemblies, ranging from 2 to 30 nanostars per assembly, with a functionalized silica (SiO) shell, facilitating their preservation. The engineered thickness of the silica shell ensures unhindered optical measurements while elucidating the influence of multiple AuNS cores. Due to the formation of nanogaps and nanojunctions between AuNSs within assembly, we have achieved a maximum SERS enhancement factor (EF) of 1.416 × 10 for the rhodamine 6G analyte. Utilizing assembled AuNS cores within a single silica shell, we have demonstrated AA (sensitivity of 5.278 × 10 μA μM cm) and glucose (sensitivity of 7.519 × 10 μA μM cm) sensing via a nonenzymatic electrochemical pathway.

    Read More on PubMed
  • The presence of nodularin-R (NOD-R) in water has gained considerable attention because of its widespread distribution and high toxicity. In this study, an accurate and rapid visible-light-driven self-powered photoelectrochemical (PEC) biosensor was developed by integrating a portable paper-based electrode with a custom-built miniaturized PEC detection device. The newly designed system successfully achieved on-site detection of NOD-R in real water samples based on PEC technology. First, target recognition triggers the initiation of the hybridization chain reaction to generate double-stranded DNA. The thus-formed double-stranded DNA entrapped methylene blue (MB), and the dye molecules were irradiated with visible light for conversion to leuco-MB in the presence of ascorbic acid. The resulting leuco-MB species significantly amplified the PEC signal output of TiO-MXene, enabling NOD-R detection. Under optimal conditions, the proposed PEC assay strategy demonstrated NOD-R detection within a concentration range from 20 fg mL to 10 ng mL with a detection limit of 19.6 fg mL. In addition, a custom-built miniaturized PEC detection device conveniently integrates the detection component with the light source, enabling the real-time collection of results via a wireless module. This innovative self-powered PEC platform provides significant advancements in smooth and intelligent detection compared to traditional PEC detection devices.

    Read More on PubMed
  • Commonly used media for the differentiation of human pluripotent stem cells into cardiomyocytes (hPSC-CMs) contain high concentrations of proteins, in particular albumin, which is prone to quality variations and presents a substantial cost factor, hampering the clinical translation of in vitro-generated cardiomyocytes for heart repair. To overcome these limitations, we have developed chemically defined, entirely protein-free media based on RPMI, supplemented with L-ascorbic acid 2-phosphate (AA-2P) and either the non-ionic surfactant Pluronic F-68 or a specific polyvinyl alcohol (PVA).

    Read More on PubMed
  • A comprehensive chemical characterization (water-soluble ions, organic and elemental carbon, water- and methanol-soluble organic carbon, levoglucosan, and major and trace metals) of PM samples collected in a rural area located in the southeast of the Iberian Peninsula was performed. Additionally, the oxidative potential of the samples, used as an indicator of aerosol toxicity, was determined by the ascorbic acid (OP) and dithiothreitol (OP) assays. The average concentration of PM during the study period, spanning from late winter to early spring, was 20.2 ± 10.8 μg m. Nitrate, carbonate and calcium (accounting for 20% of the average PM mass concentration) and organic matter (with a contribution of 28%) were the main chemical components of PM. Average concentrations of traffic tracers such as elemental carbon, copper and zinc (0.31 μg m, 3 ng m, and 9 ng m, respectively) were low compared with those obtained at an urban site in the same region, due to the almost total absence of traffic in the surrounding of the sampling site. Regarding levoglucosan and K, which can be considered as tracers of biomass burning, their concentrations (0.12 μg m and 55 ng m, respectively) were in the lower range of values reported for other rural areas in Europe, suggesting a moderate contribution form this source to PM levels. The results of the Pearson's correlation analysis showed that volume-normalised OP and OP levels (average values of 0.11 and 0.32 nmol min m, respectively) were sensitive to different PM chemical components. Whereas OP was not strongly correlated with any of the species measured, good correlation coefficients of OP with water-soluble organic carbon (r = 0.81) and K (r = 0.73) were obtained, which points to biomass burning as an important driver of the DTT activity.

    Read More on PubMed
  • Sweet potato tuberous roots are susceptible to chilling injury (CI) when stored below 10 °C. In this study, we investigated the mitigating effects of hot air (HA) treatment on CI. Results showed that HA45°C-3h treatment delayed the CI and internal browning during cold storage. After HA45°C-3h treatment, the cells' structural integrity was maintained, malondialdehyde accumulation and ion leakage were inhibited. Additionally, the osmoregulatory substances, such as total soluble solids, proline were maintained, and soluble protein was enhanced. Higher activity of antioxidant enzymes including superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and the antioxidant substances including ascorbic acid, glutathione, total phenols, and flavonoids were observed in sweet potato tuberous roots treated by HA45°C-3h than untreated group. Our study suggested that HA45°C-3h treatment could reduce CI and maintain a better quality of sweet potato tuberous roots following cold storage.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!