Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • Wilson disease (WD) is an autosomal recessive disorder caused by homozygous or compound heterozygous mutations in ATP7B. Clinical manifestations primarily involve liver and nervous system lesions, with rarely observed hematologic manifestations.

    Read More on PubMed
  • Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.

    Read More on PubMed
  • Global change is affecting plant-insect interactions in agroecosystems and can have dramatic consequences on yields when causing non-targeted pest outbreaks and threatening the use of pest natural enemies for biocontrol. The vineyard agroecosystem is an interesting system to study multi-stress conditions: on the one hand, agricultural intensification comes with high inputs of copper-based fungicides and, on the other hand, temperatures are rising due to climate change. We investigated interactive and bottom-up effects of both temperature increase and copper-based fungicides exposure on the important Lepidopteran vineyard pest Lobesia botrana and its natural enemy, the oophagous parasitoid Trichogramma oleae. We exposed L. botrana larvae to three increasing copper sulfate concentrations under two fluctuating thermal regimes, one current and one future. Eggs produced by L. botrana were then exposed to T. oleae. Our results showed that the survival of L. botrana, was only reduced by the highest copper sulfate concentration and improved under the warmer regime. The development time of L. botrana was strongly reduced by the warmer regime but increased with increasing copper sulfate concentrations, whereas pupal mass was reduced by both thermal regime and copper sulfate. T. oleae F1 emergence rate was reduced and their development time increased by combined effects of the warmer regime and increasing copper sulfate concentrations. Size, longevity and fecundity of T. oleae F1 decreased with high copper sulfate concentrations. These effects on the moth pest and its natural enemy are probably the result of trade-offs between the survival and the development of L. botrana facing multi-stress conditions and implicate potential consequences for future biological pest control. Our study supplies valuable data on how the interaction between pests and biological control agents is affected by multi-stress conditions.

    Read More on PubMed
  • Mancozeb is a fungicide of the dithiocarbamate functional group, and it is widely used in agriculture to control various fungal diseases. Thus, studies detailing its toxicological characteristics are necessary, as the population may be exposed through the consumption of food or water contaminated with mancozeb. The aim of this study was to evaluate the cytotoxic, genotoxic, and mutagenic potentials of this dithiocarbamate using the L. test system as well as its cytotoxicity in erythrocytes of female rats (Rattus norvegicus). The meristematic roots of bulbs were exposed to various concentrations of mancozeb (62.5, 125, 250, and 500 mg/L) for 24, 48, and 72 h to determine cytotoxicity by evaluating the mitotic index (MI), chromosomal aberrations (CA), and nuclear anomalies (NA) for genotoxicity analysis and micronuclei (MN) for mutagenicity analysis. Distilled water and copper sulfate (0.0006 mg/L) were used as the negative control (NC) and positive control (PC), respectively. The MI and the sum of CA and NA of all the mancozeb concentrations showed a significant difference (p ≤ 0.05) in relation to the NC, indicating possible cytotoxicity and genotoxicity induced by mancozeb. Additionally, MN significantly increased with mancozeb concentration from 250 mg/L to 500 mg/L in 24 h when compared to NC. In another study model, mancozeb showed to be cytolytic at concentrations starting from 125 mg/L. Therefore, these results indicate that mancozeb causes cytogenetic alterations and mutagenicity at lower concentrations than those used in agriculture, which emphasizes the need for more care when managing this fungicide.

    Read More on PubMed
  • Keratoconus (KCN) is characterized by gradual thinning and steepening of the cornea, which can lead to significant vision problems owing to high astigmatism, corneal scarring, or even corneal perforation. The detection of KCN in its early stages is crucial for effective treatment. In this review, we describe current advances in the diagnosis and treatment of KCN.

    Read More on PubMed
  • The solvothermal reaction of CuSO·5HO and a chiral -pempH ligand (molar ratio 6 : 1) first forms the metastable intermediate [Cu(OH)(-pempH)(SO)(HO)]·35HO (1), followed by the formation of the stable phase [Cu(OH)(-pempH)(SO)(HO)]·HO (2). Compound 1 displays a novel 3D open-framework structure containing Cu cluster nodes and sulfate links, which can be converted to the layered compound 2. We also investigated the photothermal effects of both compounds.

    Read More on PubMed
  • The deep geological repository (DGR) concept consists of storing radioactive waste in metal canisters, surrounded by compacted bentonite, and placed deeply into a geological formation. Here, bentonite slurry microcosms with copper canisters, inoculated with bacterial consortium and amended with acetate, lactate and sulfate were set up to investigate their geochemical evolution over a year under anoxic conditions. The impact of microbial communities on the corrosion of the copper canisters in an early-stage (45 days) was also assessed. The amended bacterial consortium and electron donors/acceptor accelerated the microbial activity, while the heat-shocked process had a retarding effect. The microbial communities partially oxidize lactate to acetate, which is subsequently consumed when the lactate is depleted. Early-stage microbial communities showed that the bacterial consortium reduced microbial diversity with Pseudomonas and Stenotrophomonas dominating the community. However, sulfate-reducing bacteria such as Desulfocurvibacter, Anaerosolibacter, and Desulfosporosinus were enriched coupling oxidation of lactate/acetate with reduction of sulfates. The generated biogenic sulfides, which could mediate the conversion of copper oxides (possibly formed by trapped oxygen molecules on the bentonite or driven by the reduction of HO) to copper sulfide (CuS), were identified by X-ray photoelectron spectroscopy (XPS). Overall, these findings shed light on the ideal geochemical conditions that would affect the stability of DGR barriers, emphasizing the impact of the SRB on the corrosion of the metal canisters, the gas generation, and the interaction with components of the bentonite.

    Read More on PubMed
  • The study evaluated the use of nano copper in semi-purified diets for laying quails and its effect on performance, metabolic state, and bioavailability. A total of 160 (180-days-old) quails were distributed in a completely randomized design, in a 3x3+1 factorial. The copper sources used were copper sulfate, copper oxide, and nano copper oxide, at levels of 200, 400, and 800 ppm each, totaling nine treatments plus a negative control (with no copper inclusion). The following variables were determined: weight gain, feed intake, egg production, egg weight, hemoglobin, hematocrit, Cu in the tissues and Cu bioavailability. Data were subjected to analysis of variance at 5% probability. The effect of sources and levels, as well as the interaction between the factors were evaluated. When interaction was observed, the effect of sources was evaluated separately by the Tukey's test and the effect of levels by regression, both at 5% probability. Copper nano oxide can be used at up to 800 ppm in the diet of laying quails without altering the productive performance, and with higher bioavailability than conventional copper oxide. Hemoglobin increases with the inclusion of 200 and 400 ppm of nano copper oxide and the hematocrit with 400 ppm.

    Read More on PubMed
  • (1) Background: This study assessed the efficacy of hydroxychloride sources of zinc (Zn), manganese (Mn), and copper (Cu) compared with organic sources in the rearing diets of Lohmann brown pullets, focusing on pullet performance, tibia quality, egg production, and eggshell quality. (2) Methods: A total of 120 birds (six replications and 10 birds each) received diets with Mn, Zn, and Cu from organic or hydroxychloride sources during the rearing phase. After the onset of lay, birds were fed diets containing oxide/sulfate sources up to 50 weeks of age. (3) Results: no significant differences were observed in growth performance and tibia quality during the rearing phase ( > 0.05). From 18 to 24 weeks of age, no carryover effect on egg production performance was observed. However, from 25-50 weeks, pullets fed hydroxychloride sources showed lower feed intake and egg mass compared to the organic group ( < 0.05), whereas egg production and eggshell quality remained similar between groups ( > 0.05). (4) Conclusions: These findings suggest the potential of hydroxychloride sources in rearing diets without compromising overall growth in the pullet phase and feed efficiency in the laying cycle.

    Read More on PubMed
  • With the rapid development of electronic technology and large-scale integrated circuit devices, it is very important to develop thermal management materials with high thermal conductivity. Silicon carbide whisker-reinforced copper matrix (Cu/SiCw) composites are considered to be one of the best candidates for future electronic device radiators. However, at present, most of these materials are produced by high-temperature and high-pressure processes, which are expensive and prone to interfacial reactions. To explore the plating solution system suitable for SiCw and Cu composite electroplating, we tried two different Cu-based plating solutions, namely a Systek UVF 100 plating solution of the copper sulfate (CuSO) system and a Through Silicon Via (TSV) plating solution of the copper methanesulfonate (Cu(CHSO)) system. In this paper, Cu/SiCw composites were prepared by composite electrodeposition. The morphology of the coating under two different plating liquid systems was compared, and the mechanism of formation of the different morphologies was analyzed. The results show that when the concentration of SiCw in the bath is 1.2 g/L, the surface of the Cu/SiCw composite coating prepared by the CuSO bath has more whiskers with irregular distribution and the coating is very smooth, but there are pores at the junction of the whiskers and Cu. There are a large number of irregularly distributed whiskers on the surface of the Cu/SiCw composite coating prepared with the copper methanesulfonate (Cu(CHSO)) system. The surface of the composite is flat, and Cu grows along the whisker structure. The whisker and Cu form a good combination, and there is no pore in the cross-section of the coating. The observation at the cross-section also reveals some characteristics of the toughening mechanism of SiCw, including crack deflection, bridging and whisker pull-out. The existence of these mechanisms indicates that SiCw plays a toughening role in the composites. A suitable plating solution system was selected for the preparation of high-performance Cu/SiCw thermal management materials with the composite electrodeposition process.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!