Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • This study aims to assess the impact of Hurricane Maria on mortality rates and patient conditions in the Medical Intensive Care Unit (MICU) at the Veterans Affairs Caribbean Healthcare Hospital in San Juan, Puerto Rico (PR). The focus is on the 2 months before and after the hurricane's landfall.

    Read More on PubMed
  • Probabilistic weather forecasting with machine learning.

    Weather forecasts are fundamentally uncertain, so predicting the range of probable weather scenarios is crucial for important decisions, from warning the public about hazardous weather to planning renewable energy use. Traditionally, weather forecasts have been based on numerical weather prediction (NWP), which relies on physics-based simulations of the atmosphere. Recent advances in machine learning (ML)-based weather prediction (MLWP) have produced ML-based models with less forecast error than single NWP simulations. However, these advances have focused primarily on single, deterministic forecasts that fail to represent uncertainty and estimate risk. Overall, MLWP has remained less accurate and reliable than state-of-the-art NWP ensemble forecasts. Here we introduce GenCast, a probabilistic weather model with greater skill and speed than the top operational medium-range weather forecast in the world, ENS, the ensemble forecast of the European Centre for Medium-Range Weather Forecasts. GenCast is an ML weather prediction method, trained on decades of reanalysis data. GenCast generates an ensemble of stochastic 15-day global forecasts, at 12-h steps and 0.25° latitude-longitude resolution, for more than 80 surface and atmospheric variables, in 8 min. It has greater skill than ENS on 97.2% of 1,320 targets we evaluated and better predicts extreme weather, tropical cyclone tracks and wind power production. This work helps open the next chapter in operational weather forecasting, in which crucial weather-dependent decisions are made more accurately and efficiently.

    Read More on PubMed
  • The Southern Ocean is rich in highly dynamic mesoscale eddies and substantially modulates global biogeochemical cycles. However, the overall surface and subsurface effects of eddies on the Southern Ocean biogeochemistry have not been quantified observationally at a large scale. Here, we co-locate eddies, identified in the Meta3.2DT satellite altimeter-based product, with biogeochemical Argo floats to determine the effects of eddies on the dissolved inorganic carbon (DIC), nitrate, and dissolved oxygen concentrations in the upper 1,500 m of the ice-free Southern Ocean, as well as the eddy effects on the carbon fluxes in this region. DIC and nitrate concentrations are lower in anticyclonic eddies (AEs) and increased in cyclonic eddies (CEs), while dissolved oxygen anomalies switch signs above (CEs: positive, AEs: negative) and below the mixed layer (CEs: negative, AEs: positive). We attribute these anomalies primarily to eddy pumping (isopycnal heave), as well as eddy trapping for oxygen. Maximum anomalies in all tracers occur at greater depths in the subduction zone north of the Antarctic Circumpolar Current (ACC) compared to the upwelling region in the ACC, reflecting differences in background vertical structures. Eddy effects on air-sea exchange have significant seasonal variability, with additional outgassing in CEs in fall (physical process) and additional oceanic uptake in AEs and CEs in spring (biological and physical process). Integrated over the Southern Ocean, AEs contribute 0.01 Pg C (7 ) to the Southern Ocean carbon uptake, and CEs offset this by 0.01 Pg C (2 ). These findings underscore the importance of considering eddy impacts in observing networks and climate models.

    Read More on PubMed
  • Ocean microbial communities form the base of marine food webs, facilitating energy transfer and nutrient cycling, thereby supporting higher trophic levels. We investigated their composition and functional profiles across depths (surface waters 0, 29, and 63 m and bottom waters 100, 150, and 200 m) in the central-eastern Arabian Sea (CEAS) using next-generation sequencing. It was hypothesized that the composition and functional diversity of these communities would be influenced by depth and environmental parameters. Our research showed that microbial communities vary with depth and are shaped by environmental factors like irradiance, temperature, dissolved oxygen, suspended particulate matter, chlorophyll a, and ammonia concentrations. Cyanobacteria (Prochlorococcus sp) and Mamiellaceae, belonging to picoeukaryotes, exhibited distinct depth-specific distributions up to subsurface chlorophyll maxima (SCM) at 63 m. On the other hand, a community shift in the microbial communities comprising Firmicutes, Bacteroidetes, and Actinobacteria phyla was observed at the deeper water depths. The profiling of functional genes pointed out the expression of carbon fixation by photosynthetic organisms at the surface (0, 29, and 63 m), which shifted to prokaryotic carbon fixation in deeper waters (0, 150, and 200 m). Microcosm experiments (mixing of surface water with water from the SCM) carried out simulating disturbances such as climate change forced mixing (cyclones), revealed shifts in microbial structure and function. It was observed that within 48 h, the carbon fixation activity changed from photosynthetic organisms to prokaryotes and indicated an increase in stress-related biosynthetic pathways such as expression of quorum sensing, biosynthesis of antibiotics, lipopolysaccharides, and secondary metabolites. These findings have implications for predictive modelling of food web dynamics and fisheries management in the context of climate change.

    Read More on PubMed
  • The purpose of the present observational study was to evaluate the bacterial load in the air following various dental procedures.

    Read More on PubMed
  • The most prominent and persistent feature of the eastern Mediterranean Levantine Basin (LB) is the warm anticyclonic Cyprus Eddy (CE) located above the Eratosthenes Seamount (ESM). This eddy periodically couples with two smaller cyclonic and anticyclonic eddies, the South Shikmona Eddy (SSE) and North Shikmona Eddy (NSE), which form downstream. The reason for the zonal drift of the CE center and the formation mechanism of the CE, SSE and NSE is largely debated today, yet the upwelling and biological productivity of the LB can be strongly impacted by the local dynamics. Using a variety of research methods-theory, models, laboratory and field experiments-we demonstrate that the CE is an anticyclonic Taylor column generated by the eastward Mid Mediterranean Jet (MMJ) impinging over the ESM. When the center of the CE is west of 32.7° E, a Rossby wave with embedded cyclonic and anticyclonic vortices corresponding to the SSE and NSE, respectively, forms downstream. The position of the CE center reveals to be dependent on the intensity of the MMJ and thus on the cyclonic/anticyclonic mode of the North Ionian Gyre. Our results highlight the key role the central Mediterranean Sea plays on LB, and can be used to predict the Easter Mediterranean Sea mesoscale dynamics up to about three years in advance. They also show how Rossby waves can trigger the transport of nutrient-rich coastal waters offshore, a mechanism that is of paramount importance for the oligotrophic environment of the LB. The coherent results from our multi-approach research underscore the uniqueness and reliability of our findings.

    Read More on PubMed
  • Although natural hazards (e.g., tropical cyclones, earthquakes) disproportionately affect developing countries, most research on their mental health impact has been conducted in high-income countries. We aimed to summarize prevalences of mental disorders in Global South populations (classified according to the United Nations Human Development Index) affected by natural hazards.

    Read More on PubMed
  • Sea turtles are globally vulnerable due to climate change uncertainties and anthropogenic threats. The present study highlights the impacts of a very severe tropical cyclone (VSCS) on a potential sea turtle rookery and suggests management strategy for protection and conservation of rookery habitat under changing spit geomorphology. The results show that VSCS has short-term impact on rookery and spit geomorphology, while long-term precarious impact over the coastal sedimentology due to debris pollution. Study on geomorphology, sedimentology, and debris pollution indicates that plastic pollution and change in sediment characteristics are the most probable cause for failure of arribada events during post-cyclone year. Further, study identified that reduced estuary mouth and elongation of sand spit are the potential cause for coastal flooding and loss of nesting habitat. Therefore, locational stability of estuary cross-section under varying dimension of inlet channel and width are estimated for better management of uncertainties arises from the extreme events. Results of stability analysis show that observed cross Sect. (207-1728 m) is often fall within unstable regimes compared to the estimated equilibrium cross-sectional area (790-1085 m) under natural estuary condition. Considering the severity of long-shore transport and fast migration of sand spit, study further recommends cross-sectional area of magnitude (951-965 m) is highly essential while inlet channel oscillates between 3500 and 7500 m. Similarly, for siltation issues, cross-sectional area (769-969 m) is highly required for the varying dimension of estuary widths (50-600 m). In addition, involvement of local community in cleaning coast following cyclonic storm could be best approach instead of mechanical way to unalter the rookery sedimentology. This comprehensive approach addresses immediate cyclone-induced threats while promoting the long-term sustainability of sea turtle nesting habitats, offering actionable management recommendations for maintaining estuary stability and preserving critical nesting environments in face of increasing coastal disasters.

    Read More on PubMed
  • Hurricane Ida, a Category 4 hurricane, made landfall in southern Louisiana in August of 2021, causing widespread wind damage and flooding. The objective of this study was to investigate knowledge, attitudes, and practices related to post-hurricane mold exposure and cleanup among residents and workers in areas of Louisiana affected by Hurricane Ida and assess changes in knowledge, attitudes, and practices that have occurred over the past 16 years since Hurricane Katrina. We conducted in-person interviews with 238 residents and 68 mold-remediation workers in areas in and around New Orleans to ask about their mold cleanup knowledge and practices, personal protective equipment use, and risk perceptions related to mold. Knowledge of recommended safety measures increased since the post-Katrina survey but adherence to recommended safety measures did not. Many residents and some workers reported using insufficient personal protective equipment when cleaning up mold despite awareness of the potential negative health effects of mold exposure.

    Read More on PubMed
  • Mangroves protect coasts from extreme weather and erosion but can be destroyed by climate change and harvesting. However, there is no consistent formulation of protective capacity that integrates key factors such as area, width, height, and health. Here, we quantified and analyzed a process-based measure of mangrove coastal protection index (MCPI) incorporating cross-shore width, canopy height, and the normalized difference vegetation index (health index). Width/area generally declined at low rates but width increases in some regions reduced MCPI. Cluster exchange network analysis from 2007 to 2019 showed an 800% increase in mangrove forests with characteristically low height, width, and MCPI. Globally, this suggests a 25% decrease in MCPI from 2007 to 2019, primarily from height/biomass change, compared to a 2% decrease in area. Relatively sheltered low-latitude high mangrove strands (>20 m) of high-MCPI appear to be resilient to destruction from cyclones. In contrast, our results highlight an alarming, widespread decline in low MCPI, particularly along coasts exposed to deep water, possibly in concert with human destruction, cyclones, and intensifying oceanic boundary currents.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!