Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • Understanding how animals navigate novel heterogeneous landscapes is key to predicting species responses to land-use change. Roads are pervasive features of human-altered landscapes, known to alter movement patterns and habitat connectivity of vertebrates like small mammals and amphibians. However, less is known about how roads influence movement of insects, a knowledge gap that is especially glaring in light of recent investments in habitat plantings for insect pollinators along roads verges and medians. In this study, we experimentally investigate behavioral avoidance of roads by a solitary bee and explore whether landscape factors are associated with bee movement in urban Massachusetts, USA. Using mark-recapture surveys, we tracked individual solitary bee (Agapostemon virescens) foraging movements among floral patches separated by roads or grass lawn. We found that roads acted as partial barriers to movements of foraging bees, with road crossings nearly half as likely as along-road movements (36% vs. 64%). Movement probabilities were negatively associated with distance and the proportion of roadway between patches, and positively associated with higher floral resource density at the destination patch. Importantly, our findings also suggest that while roads impede bee movement, they are not complete barriers to dispersal of bees and/or transfer of pollen in urban landscapes. In the context of green space design, our findings suggest that prioritizing contiguous habitat and ensuring higher floral densities along road edges may enhance resource access for pollinators and mitigate the risk of ecological traps.

    Read More on PubMed
  • The Internet of Things (IoT) paradigm is a foundational and integral factor for the development of smart applications in different sectors. These applications are comprised over set of interconnected modules that exchange data and realize the distributed data flow (DDF) model. The execution of these modules on distant cloud data-center is prone to quality of service (QoS) degradation. This is where fog computing philosophy comes in to bridge this gap and bring the computation closer to the IoT devices. However, resource management in fog and optimal allocation of fog devices to application modules is critical for better resource utilization and achieve QoS. Significant challenge in this regard is to manage the fog network dynamically to determine cost effective placement of application modules on resources. In this study, we propose the optimal placement strategy for smart health-care application modules on fog resources. The objective of this strategy is to ensure optimal execution in terms of latency, bandwidth and earliest completion time as compared to few baseline techniques. A honey bee inspired strategy has been proposed for allocation and utilization of the resource for application module processing. In order to model the application and measure the effectiveness of our strategy, iFogSim Java-based simulation classes have been extended and conduct the experiments that demonstrate the satisfactory results.

    Read More on PubMed
  • The reported massive decline of arthropods and particularly of pollinators such as wild bees, in terms of abundance and richness, is a threat for crop production and wild plant biodiversity conservation. This decline is mainly explained by a combination of drivers at local- and landscape-scale related to intensive farming practices. Assessing the evolution of wild bee communities in agricultural ecosystems and their response to such practices is needed to address conservation purposes.

    Read More on PubMed
  • Sustainability in beekeeping depends on identifying the factors affecting honey and beeswax yields (HY and BWY) - key products - and accurately predicting these yields. Therefore, this study aimed to predict HY and BWY using a classification and regression tree (CART), eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, and thermal image processing in Apis mellifera. In this study, 13 colonies of 6 different breeds raised in 10-frame Langstroth hives were used. The effects of independent variables were predicted using data mining algorithms and 15 performance metrics for the effectiveness of the algorithms. Colony power (CP), thermal temperatures (T, T, and T), breed, a*, b*, red, green, saturation, and brightness impacted HY and BWY in different algorithms, but not birth year of queen, L, hue and blue. As a result, XGBoost, CART, and RF demonstrated high predictive performance, respectively. Due to their higher predictive performance, XGBoost and CART algorithms could predict HY and BWY using CP, thermal temperatures, and image values. These techniques could be useful for producers to monitor production quickly and non-invasively without threatening colony welfare.

    Read More on PubMed
  • Beekeeping for honey production is a vital economic activity in Vietnam, significantly contributing to the nation's agricultural exports and poverty alleviation. However, the widespread use of pesticides, compounded by insufficient regulations, poses serious challenges to the industry and threatens bee health. This study examined the oral toxicities of five commonly used agricultural insecticides, including bifenthrin, imidacloprid, thiacloprid, thiamethoxam, and chlorantraniliprole, on four honey bee species prevalent in Vietnam: the Asian honey bee (Apis cerana), European honey bee (A. mellifera), giant honey bee (A. dorsata), and dwarf honey bee (A. florea). Our results indicated significant variability in toxicity among the pesticides and honey bee species, with the managed species A. cerana showing the highest tolerance across all tested insecticides. In contrast, the wild species A. dorsata and A. florea were significantly more sensitive. These findings highlight the need to develop a pesticide risk assessment and improve pesticide regulations that consider the impacts on a broader range of honey bee species beyond A. mellifera.

    Read More on PubMed
  • Pollinators are exposed to multiple pesticides during their lifetime. Various pesticides are used in agriculture and thus not all mixtures have been tested against each other and little is known about them. In this article, we investigate the impact of sulfoxaflor, a novel sulfoximine insecticide, and azoxystrobin, a widely used strobilurin fungicide, on bumble bee Bombus terrestris worker survival and physiological functions. The dosages used in this experiment are selected from dose response experiments based on LD data. Due to variable interactive effects on survival, our findings reveal distinct effects on bumble bee metabolic rate and respiratory patterns induced by sulfoxaflor in combination with azoxystrobin, shedding light on previously unexplored aspects of its physiological impact. Notably, we observed noteworthy differences between oral and contact treatments, emphasizing the importance of considering distinct application methods when evaluating pesticide effects and interactions. Specifically, our results indicate that azoxystrobin can mitigate the impact of sulfoxaflor, suggesting dose-dependent antagonistic interaction between these pesticides in contact exposure. In oral exposure, however, Amistar tended to potentiate the sulfoxaflor effect. This study contributes valuable insights into the multifaceted dynamics of pesticide exposure and interactions, paving the way for a more nuanced understanding of their implications on pollinator health.

    Read More on PubMed
  • Halictoxenos is a genus of parasites with a mainly holarctic distribution and exclusive parasite of bees of the Halictinae subfamily. In this work, we describe a new species from Mexico, parasite of the halictid Lasioglossum exiguum and with a known distribution in locations of central and southern Veracruz. The delimitation of this species is supported by morphological and molecular evidence. A diagnosis for Halictoxenos and certain characters for species delimitation is also proposed. It is expected that this research may be a steppingstone to the continuity of the study of Halictoxenos and the Stylopidae family in Mexico and the American continent.

    Read More on PubMed
  • COI-barcode-like sequences appear to show substantially more species diversity among Mesoamerican bumblebees than had been reported previously from morphological studies. Closer examination shows that some of this apparent diversity may be pseudospecies (groups falsely misinterpreted as separate species), often supported by paralogous 'numts' (nuclear copies of mitochondrial sequences). For the well-sampled weisi-complex, we seek to filter out pseudogenes in order to use the orthologous COI-barcode sequences for identifying estimates of evolutionary relationships and likely species' gene coalescents for candidate species. Even after this filtering, in contrast to recent purely morphological studies our results from an integrative assessment of species' gene coalescents together with skeletal morphology support that 'Bombus weisi' Friese in its recent broad sense consists of two species: B. weisi (which includes the taxon montezumae Cockerell); and B. nigrodorsalis Franklin. Our interpretation rejects likely numts-based pseudospecies and a candidate species that are unsupported by skeletal morphology. This shows that careful attention needs to be paid to both barcode analysis and to skeletal morphology, to avoid describing pseudospecies.

    Read More on PubMed
  • Augochloropsis (Glyptobasia) Moure, a small Neotropical subgenus, is revised, with the description of a new species, Augochloropsis aenea sp. nov., from Puno, southern Peru. Augochloropsis (Glyptobasia) comprised the two nominal species, A. bertonii (Schrottky) with a bluish-violet body coloration and A. chloera (Moure) with a bright green body coloration, both species have coarse integumental punctures and an unusual propodeal structure. We interpret these striking color differences, as a case of color polymorphism within a single species. Therefore, Moure's taxon is placed as a junior synonym of A. bertonii. An identification key for the species and a distribution map are also provided.

    Read More on PubMed
  • Available information about bees of the genus Epeolus (Hymenoptera: Apidae) in the Palaearctic region is summarized. Forty-eight species are currently known from this area. A new synonymy is proposed for Epeolus tsushimensis Cockerell, 1926=E. japonicus Bischoff, 1930, syn. nov. and a lectotype is designated for E. fallax Morawitz, 1872. The first illustrated key and an updated catalogue of all 48 species known from the Palaearctic region are provided. Brief information about the history of the study and distribution patterns of these сleptoparasitic bees is also included.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!