Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • Oleogels have been explored as fat substitutes due to their healthier composition compared to trans and saturated fats, also presenting interesting technological perspectives. The aim of this study was to investigate the compositional perspective of multicomponent oleogels. Structuring ability of lecithin (LEC) (20 or 90 wt% of phosphatidylcholine - PC) combined with glycerol monostearate (GMS), sorbitan monostearate (SMS) or sucrose monostearate (SAC) in sunflower oil was evaluated from oleogels properties. The thermal and rheological properties, microstructure and stability of the oleogels were affected by the difference in the chemical composition of LEC and the ratio between LEC and different surfactants. Interestingly, low-phosphatidylcholine LEC (L20) performed better, although systems formed with reduced amounts of LEC tended to be softer (LEC-GMS) and present high oil holding capacity (LEC-SMS). The mixtures of LEC and monostearate-based surfactants showed different behaviors, depending on the surfactant polar head. In LEC-GMS systems, LEC hindered the self-assembly of GMS in sunflower oil, compromising mechanical properties and increasing oil release. When combined with SMS, LEC acted as a crystal habit modifier of SMS, forming a more homogeneous microstructure and producing stronger oleogels with greater oil binding capacity. However, above the threshold concentration, LEC prevented SMS self-assembly, resulting in a weaker gel. A positive interaction was found in LEC-SAC formulations in specific ratios, since SAC cannot act as a single oleogelator. Results show the impact of solubility balance played by LEC and fatty-acid derivatives surfactant when combined and used as oleogelators. This knowledge can contribute to a rational perspective in the preparation and modulation of the properties of edible oleogels.

    Read More on PubMed
  • Skin is the largest organ of the human body, as it protects the body from the external environment. Nowadays, skin diseases and skin problems are more common, and millions of people are affected daily. Skin diseases are due to numerous infectious pathogens or inflammatory conditions. The increasing demand for theoretical research and practical applications has led to the rising prominence of gel as a semisolid material. To this end, organogels has been widely explored due to their unique composition, which includes organic solvents and mineral or vegetable oils, among others. Organogels can be described as semisolid systems wherein an organic liquid phase is confined within a three-dimensional framework consisting of self-assembled, cross-linked, or entangled gelator fibers. These gels have the ability to undergo significant expansion and retain substantial amounts of the liquid phase, reaching up to 99% swelling capacity. Furthermore, they respond to a range of physical and chemical stimuli, including temperature, light, pH, and mechanical deformation. Notably, due to their distinctive properties, they have aroused significant interest in a variety of practical applications. Organogels favor the significant encapsulation and enhanced permeation of hydrophobic molecules when compared with hydrogels. Accordingly, organogels are characterized into lecithin organogels, pluronic lecithin organogels, sorbitan monostearate-based organogels, and eudragit organogels, among others, based on the nature of their network and the solvent system. Lecithin organogels contain lecithin (natural and safe as a living cell component) as an organogelator. It acts as a good penetration enhancer. In this review, first we have summarized the fundamental concepts related to the elemental structure of organogels, including their various forms, distinctive features, methods of manufacture, and diverse applications. Nonetheless, this review also sheds light on the delivery of therapeutic molecules entrapped in the lecithin organogel system into deep tissue for the management of skin diseases and provides a synopsis of their clinical applications.

    Read More on PubMed
  • The aim of this study was to develop azithromycin (AZT)-loaded liposomes (LP) and niosomes (NS) useful for the treatment of bacterial skin infections and acne. LP based on phosphatidylcholine from egg yolk (EPC) or from soybean lecithin (SPC), and NS composed of sorbitan monopalmitate (Span 40) or sorbitan monostearate (Span 60) were prepared through the thin film hydration (TFH) and the ethanol injection (EI) methods. The formulations were subsequently characterized for their physico-chemical and functional properties. Vesicles prepared through TFH showed higher average sizes than the corresponding formulations obtained by EI. All the vesicles presented adequate encapsulation efficiency and a negative ζ potential, which assured good stability during the storage period (except for LP-SPC). Formulations prepared with TFH showed a more prolonged AZT release than those prepared through EI, due to their lower surface area and multilamellar structure, as confirmed by atomic force microscopy nanomechanical characterization. Finally, among all the formulations, NS-Span 40-TFH and LP-EPC-TFH allowed the highest drug accumulation in the skin, retained the antimicrobial activity and did not alter fibroblast metabolism and viability. Overall, they could ensure to minimize the dosing and the administration frequency, thus representing promising candidates for the treatment of bacterial skin infections and acne.

    Read More on PubMed
  • Niosomes represent vesicular carriers capable of encapsulating both hydrophobic and hydrophilic drugs within their inner core or bilayer shell. They are typically composed of non-ionic synthetic surfactants such as sorbitan monostearate (Span60) with the addition of cholesterol (Chol). The physical properties and stability of niosomal vesicles strongly depend on the composition of their bilayers, which plays a significant role in determining the efficiency of drug encapsulation and release in drug delivery systems. In this study, we have explored the interactions between melatonin (Mel) molecules and the niosome bilayer, as well as their resulting physical properties. Molecular dynamics simulations were employed to investigate melatonin-inserted niosome bilayers, both with and without the inclusion of cholesterol. The simulation results revealed that cholesterol notably influences the location of melatonin molecules within the niosome bilayers. In the absence of cholesterol, melatonin tends to occupy the region around the Span60 tail groups. However, in the presence of cholesterol, melatonin is found in the vicinity of the Span60 head groups. Melatonin molecules in niosome bilayers without cholesterol exhibit a more ordered orientation when compared to those in bilayers containing 50 mol% cholesterol. The bilayer structure of the Span60/Mel and Span60/Chol/Mel systems exhibited a liquid-disordered phase (). In contrast, the Span60/Chol bilayer system displays a liquid-ordered phase () with less fluidity. This study reveals that melatonin induces a disorderly bilayer structure and greater lateral expansion, whereas cholesterol induces an orderly bilayer structure and a more condensed effect. Cholesterol plays a crucial role in condensing the bilayer structure with stronger interactions between Span60 and cholesterol. The addition of 50 mol% cholesterol in the Span60 bilayers not only enhances the stability and rigidity of niosomes but also facilitates the easier release of melatonin from the bilayer membranes. This finding is particularly valuable in the context of preparing niosomes for drug delivery systems.

    Read More on PubMed
  • Peanut sprouts are known to increase their resveratrol content during germination, leading to cultivation in smart farms. Recently, peanut sprout oil extraction and sales have gained traction; however, processed foods utilizing peanut sprout oil have yet to be developed. In this study, water-in-oil (W/O) emulsion gels were structured with water, peanut sprout oil (PSO), sorbitan monostearate (SMS), and candelilla wax (CW) in different ratios, and their potential as shortening substitutes in muffins was evaluated on physicochemical and sensory properties. PSO comprised 67% unsaturated fatty acids and had higher phospholipid (17.97%) and resveratrol (15.95 µg/L) contents and antioxidant activity (71.52%) compared to peanut oil. The PSO emulsion gels were physically structured without changing their chemical compositions. The SMS and CW ratios were found to have a significant influence on the textural properties, solid fat content, rheology, and crystallization of the emulsion gels. The viscoelastic properties of the emulsion gels showed a higher storage modulus than loss modulus and increased with increasing gelator content. Muffins prepared with emulsion gels were characterized by a harder texture and larger pore size, while in the case of muffins mixed with a ratio of 25% SMS and 75% CW, there was no significant difference in overall preference of sensory evaluation compared to shortening muffins. Thus, these findings reveal the potential utility of PSO as a fat substitute and indicate that W/O emulsion gels are suitable for producing muffins without a loss of quality.

    Read More on PubMed
  • A polyhydroxy methacrylate-based stationary reversed phase was used for the determination of coformulants in 20 plant protection products (PPPs). These samples were analyzed by liquid chromatography coupled to Q-Orbitrap high-resolution mass spectrometry (LC-Q-Orbitrap-HRMS) in full-scan MS and data-dependent acquisition (ddMS) modes. A total of 92 coformulants were tentatively identified in these formulations by nontargeted and unknown analyses. Twelve out of them were quantified by analytical standards. The most concentrated coformulant was the anionic surfactant dodecylbenzenesulfonic acid, whose highest content was obtained in the Score 25 sample (6.87%, w/v). Furthermore, triethylene glycol monomethyl ether, 4--butyl-2,6-di--butylphenol, 1-ethyl-2-pyrrolidone, sorbitan monostearate, 2,6-dimethylaniline, palmitamide, and N-lauryldiethanolamine were quantified for the first time in these products. Hence, the polyhydroxy methacrylate-based stationary phase increased the identification of new coformulants in PPPs, being complementary to conventional C18. This strategy could be applied in future studies to estimate potential coformulant residues from PPPs applied to crops.

    Read More on PubMed
  • Due to the increasing difficulty of drilling in the later stages of oil and gas field development, the development of micro-pores and micro-fractures is becoming common. Conventional plugging agents have relatively large particle sizes. So, choosing the appropriate plugging agent can prevent leakages. Using the inverse emulsion polymerization method, acrylamide, 2-acrylamide-2-methylpropane sulfonic acid and acrylic acid were selected to be the main reaction monomers, N,N'-methylenebisacrylamide was used as a crosslinking agent, sorbitan monostearate and polyoxyethylene sorbitan anhydride monostearate were used as emulsifiers, and 2,2'-azobis(2-methylpropionamidine) dihydrochloride was used as the initiator to synthesize a nano-scale plugging agent for oil-based drilling fluid. The plugging agent was characterized using infrared spectroscopy, scanning electron microscopy, and thermogravimetry analysis. The results showed that the plugging agent is spherical and uniform in size, with particles being in the submicron range. Additionally, it exhibited strong temperature resistance. Finally, the performance of the plugging agent was evaluated via experiments conducted under normal temperature and pressure, high-temperature and high-pressure, and core-plugging conditions. After adding the plugging agent to the oil-based drilling fluid, the basic rheological properties of the oil-based drilling fluid were not significantly affected. Furthermore, the filtration loss was significantly reduced under normal temperature and pressure, as well as under high-temperature and high-pressure conditions, after aging. When the plugging agent with 3% concentration was added, the reduction rate of pore core permeability reached 96.04%. Therefore, the plugging agent for the oil-based drilling fluid can effectively improve the wellbore stability and has a promising potential for field applications.

    Read More on PubMed
  • Effect of stearic acid-based lipophilic emulsifiers (sorbitan monostearate (Span-60), sucrose ester S-170, and lactic acid esters of monoglycerides (LACTEM)) and oleic acid-based lipophilic emulsifiers (sorbitan monooleate (Span-80) and sucrose ester O-170) on the crystallization of fat blend and the stability of whipped cream were studied. Span-60 and S-170 possessed strong nucleation inducing ability and good emulsifying properties. Thus, tiny and uniform crystals were formed in fat blends, small and ordered fat globules were distributed in emulsions, and air bubbles were effectively wrapped in firmly foam structures. The crystallization of the fat blend and the stability of whipped cream were slightly modified by LACTEM due to its poor nucleation inducing ability and moderate emulsifying characteristic. Span-80 and O-170 had weak nucleation inducing ability and poor emulsifying properties, therefore, loose crystals were formed in fat blends and some big fat globules were separated in emulsions, thereby decreasing the stability of whipped creams.

    Read More on PubMed
  • This study aimed to develop a semisolid vehicle for topical delivery of nanoencapsulated St. John's wort (SJW) extract, rich in hyperforin (HP), and explore its wound-healing potential. Four nanostructured lipid carriers (NLCs) were obtained: blank and HP-rich SJW extract-loaded (HP-NLC). They comprised glyceryl behenate (GB) as a solid lipid, almond oil (AO), or borage oil (BO) representing the liquid lipid, along with polyoxyethylene (20) sorbitan monooleate (PSMO) and sorbitan monooleate (SMO) as surfactants. The dispersions demonstrated anisometric nanoscale particles with acceptable size distribution and disrupted crystalline structure, providing entrapment capacity higher than 70%. The carrier exhibiting preferable characteristics (HP-NLC2) was gelled with Poloxamer 407 (PM407) to serve as the hydrophilic phase of a bigel, to which the combination of BO and sorbitan monostearate (SMS) organogel was added. The eight prepared bigels with different proportions (blank and nanodispersion-loaded) were characterized rheologically and texturally to investigate the impact of the hydrogel-to-oleogel ratio. The therapeutic potential of the superior formulation (HP-NLC-BG2) was evaluated in vivo on Wistar male rats through the tensile strength test on a primary-closed incised wound. Compared with a commercial herbal semisolid and a control group, the highest tear resistance (7.764 ± 0.13 N) was achieved by HP-NLC-BG2, proving its outstanding wound-healing effect.

    Read More on PubMed
  • Different drug delivery systems are prepared on the nanoscale to improve performance in drug formulations, such as nanoparticles or nanoemulsions. Polymeric nanoparticles have been used to encapsulate drugs for several applications because of some characteristics of these carriers to control drug delivery, transport molecules to a specific tissue, protect the drugs, and increase drug bioavailability. When using nanocapsules, an essential parameter for encapsulating different hydrophilic or lipophilic molecules is the characteristics of the core. Babassu oil (BBS) is a natural product from Brazil, composed majoritary of short-chain saturated fatty acids. BBS has an elevated hydrophilic-lipophilic balance (HLB), which may promote interaction of the oil with hydrophilic drugs. In this study, we developed and characterized particles containing babassu oil, solely or combined with sorbitan monostearate (Span® 60) or medium chain triglycerides (MCT) in the core to test different HLB and evaluated the encapsulation of a model hydrophilic molecule. Different techniques were used to characterize all formulations in terms of size and distribution, and in vitro drug release by dialysis technique was performed. The BBS was also characterized and presented 46,05 ± 1,11% and 15,38 ± 0,06% of lauric and myristic acid, respectively; saponification index of 248.87 ± 0.64 mg of KOH per gram of BBS, and no oxidation of the oil was indicated by means of peroxide index. Evaporation of solvent carried in the room or reduced pressure influenced the particles' size; nevertheless, all had a z-average smaller than 220 nm. Nanoparticles with a ratio among aqueous phase and organic phase of 2.8 were considered adequate to encapsulate diclofenac sodium. The particles size/zeta potential were 189.83 ± 7.86 nm / - 10.39 ± 2.52 mV, 156.80 ± 4.77 nm / - 9.27 ± 4.61 mV, and 168.87 ± 5.22 nm / - 12.98 ± 4.66 mV to nanoparticles prepared with BBS + MCT, BBS, and BBS + Span® 60, respectively. All formulations exhibited an amount of drug content close to the theoretical amount (1.0 mg mL), and no difference was observed in the release profile among the three nanoparticles. Formulation containing only babassu oil in the core displayed 66.78 ± 15.62% of encapsulation efficiency to diclofenac sodium, the highest value among all formulations tested. Results demonstrate that the innovative nanoparticles containing BBS promote the encapsulation of a model hydrophilic molecule, and other components can be evaluated to change the core's hydrophilicity and encapsulation of molecules.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!