Exploring the World of Natural Sciences

Your Source for Nature-based Education and Exploration

A Hub for Exploring the Wonders of Nature

Natural Science Hub Search function

Type your keywords and we will find the results


  • Electrode material stability is crucial for the development of next-generation ultralong-lifetime batteries. However, current solid- and liquid-state electrode materials face challenges such as rigid atomic structure collapse and uncontrolled species migration, respectively, which contradict the theoretical requirements for ultralong operation lifetimes. Herein, we present a design concept for a soft colloid polyvinylpyrrolidone iodine (PVP-I) electrode, leveraging the inherent water molecule competition effect between (SO) from the electrolyte and PVP-I from the cathode in an aqueous Zn||PVP-I battery. Electrochemical demonstrations measured under various simulated and practical (integrated with photovoltaic solar panel) conditions highlight the potential for an ultralong battery lifetime. The PVP-I colloid exhibits a dynamic response to the electric field during battery operation. More importantly, the water competition effect between (SO) from the electrolyte and water-soluble polymer cathode materials establishes a new electrolyte/cathode interfacial design platform for advancing ultralong-lifetime aqueous batteries.

    Read More on PubMed
  • Revegetation of barren substrates is often determined by the composition and distance of the nearest plant community, serving as a source of colonizing propagules. Whether such dispersal effect can be observed during the development of soil microbial communities, is not clear. In this study, we aimed to elucidate which factors structure plant and soil bacterial and fungal communities during primary succession on a limestone quarry spoil heap, focusing on the effect of distance to the adjoining xerophilous grassland.

    Read More on PubMed
  • Role of bacterial pathogens in microbial ecological networks in hydroponic plants.

    Plant-associated microbial communities are crucial for plant growth and health. However, assembly mechanisms of microbial communities and microbial interaction patterns remain elusive across vary degrees of pathogen-induced diseases. By using 16S rRNA high-throughput sequencing technology, we investigated the impact of wildfire disease on the microbial composition and interaction network in plant three different compartments. The results showed that pathogen infection significantly affect the phyllosphere and rhizosphere microbial community. We found that the primary sources of microbial communities in healthy and mildly infected plants were from the phyllosphere and hydroponic solution community. Mutual exchanges between phyllosphere and rhizosphere communities were observed, but microbial species migration from the leaf to the root was rarely observed in severely infected plants. Moreover, wildfire disease reduced the diversity and network complexity of plant microbial communities. Interactions among pathogenic bacterial members suggested that Caulobacter and Bosea might be crucial "pathogen antagonists" inhibiting the spread of wildfire disease. Our study provides deep insights into plant pathoecology, which is helpful for the development of novel strategies for phyllosphere disease prediction or prevention.

    Read More on PubMed
  • We consider different anti-symmetric Lotka-Volterra systems governing the pairwise interactions among the same species inhabiting spatially discrete habitat patches, with each patch having infinitely many equilibria. In the absence of inter-patch species migration, the species densities in each isolated patch evolve in periodic orbits. A central idea of this work is to design a control action to make the trajectories of the system asymptotically converge to a desired coexistence equilibrium among the infinitely many equilibrium points. We propose a scheme to simultaneously control different anti-symmetric Lotka-Volterra systems in multiple habitat patches by designing a metapopulation model. By introducing a suitable inter-patch migration of species, we prove that the trajectories of the resulting metapopulation model are effectively asymptotically converging to the desired coexistence equilibrium. The stability of the coexistence equilibrium is proved using Lyapunov methods coupled with LaSalle's invariance principle.

    Read More on PubMed
  • Cephalopods occupy a mid-trophic level in marine ecosystems and are vital both ecologically and as fishery resources. However, under the pressure of climate change and fishing, the sustainability of cephalopod resources requires reasonable management. This study aims to study climate change and fishing impacts on the common economic cephalopod species habitats using species distribution models. We take the northwest Pacific Ocean region as an example, which stands out as a significant region for cephalopod production around the world. Results found that the habitats of cephalopods are moving to higher latitudes or deeper waters (Bohai Sea, mid-bottom Yellow Sea, and the Okinawa Trough waters) under climate change. Additionally, these regions are currently under lower fishing pressure, which suggests that species migration might mitigate the effects of warming and fishing. This study provides the large-scale assessment of the distribution range of cephalopods affected by climate change coping with fishing pressure in the northwest Pacific Ocean. By identifying climate refuges and key fishing grounds, we underscore the importance of this information for managing cephalopod resources in the context of climate adaptation and sustainable fishing practices.

    Read More on PubMed
  • Multiple species of the elephant fishes (Mormyridae) commonly coexist in sympatry in most African tropical rivers and lakes. In this study, we investigated the trophic ecology and potential trophic niche partitioning of eleven mormyrid fish species from the Sanaga River system in Cameroon using the stable isotope composition of carbon and nitrogen in the muscle samples. Albeit most mormyrids mainly feed on invertebrates, we found differences in isotope ratios, and we report signs of the trophic niche partitioning among species. We further found significant differences in isotopic signatures within the genus, suggesting ecological niche diversification among three closely related species. We have also evaluated differences in the isotopic signals between seasons in four species, which could be possibly caused by species migration and/or anthropogenic agricultural activities. To evaluate body shape, we applied geometric morphometric analyses, and we show that most of the species are clearly morphologically separated. We focused on the mormyrid ecomorphology to identify a possible interaction between shape and ecology, and we found a relationship between the δC (but not δN) isotopic signal and morphology, suggesting their interplay during mormyrid evolution. Overall, we present robust evidence of the trophic niche partitioning within the mormyrid species community, and we integrate trophic ecology with morphometrics, shedding light on the enigmatic evolutionary history of these fascinating African fishes.

    Read More on PubMed
  • Ecological systems can generate striking large-scale spatial patterns through local interactions and migration. In the presence of diffusion and advection, this work examines the formation of flow-induced patterns in a predator-prey system with a Crowley-Martin functional response and prey harvesting, where the advection reflects the unidirectional flow of each species migration (or flow). Primarily, the impact of diffusion and advection rates on the stability and the associated Turing and flow-induced patterns are investigated. The theoretical implication of flow-induced instability caused by population migration, mainly the relative migrations between prey and predator, is examined, and it also shows that Turing instability is the particular condition of flow-induced instability. The influence of the relative flow of both species and prey-harvesting effort on the emerging pattern is reported. Advection impacts a wide range of spatiotemporal patterns, including bands, spots, and a mixture of bands and spots in both harvested and unharvested dynamics. We also observe the diagonally bend-type banded patterns and straight-type banded patterns due to positive and negative relative flows, respectively. Here, the increasing relative flow increases the band length. The growing harvesting effort also decreases the band length, producing a thin band and a mixture of spots and bands due to the negative and positive relative flows, respectively. One exciting result observed here is that harvesting effort drives the flow-Turing and flow-Turing-Hopf instability into pure-flow instability.

    Read More on PubMed
  • Hydrological connectivity is crucial for the healthy operation of wetland ecosystems. However, the current design of ecological corridors in wetland biodiversity networks is mostly based on species migration resistance, neglecting the important role of hydrological connectivity. How to incorporate hydrological connectivity into the wetland ecological corridor system (ECS) is still unclear. To answer the question, we proposed a framework for constructing a wetland ECS with the goal of improving conservation value of previously identified wetland biodiversity hotspots based on hydrological connectivity. In the proposed framework, we clarified the function-level-dimension of each corridor based on the dynamics of conservation value of biodiversity hotspots, the hierarchical classification of rivers and the dimension of hydrological connectivity. Then we determined the spatial distribution and functional zoning of the corridors by least cost model (LCM) using indicators that reflect wetland hydrological connectivity resistance, including water coverage, water use efficiency of vegetation, and land use suitability. The results are as follows: (1) to improve the overall hydrological connectivity and conservation value of biodiversity hotspots, 25 corridors should be constructed for vertical hydrological connectivity (with 3 for maintaining the status quo, 6 for improving and 16 for restoring connectivity) and 3 corridors should be constructed for lateral hydrological connectivity; (2) total area of all corridors are 11 km, accounting for 6.79% of the study area (2.47% of core zone and 4.32% of buffer zone); (3) low suitability areas of hydrological vegetation gradient (HVG) are the most extensive, followed by low suitability areas of land use/cover change (LUCC) and the average fraction coverage of water surface (AFCW), accounting for 65.08%, 47.87% and 6.76% of the corridor coverage, respectively. The proposed framework of constructing wetland ECS in this study has the potential to provide the post-2020 global biodiversity framework and sustainable development goals with specific technical support and more targeted-control strategies for building a hydrological connected wetland biodiversity network.

    Read More on PubMed
  • Under the long-term effect of mineral resource exploitation, especially open-pit mining, ecosystems are severely disturbed. Constructing and optimizing urban ecological networks influenced by open-pit mines based on mine-city coordination helps integrate ecological restoration and the construction of urban ecological environments. We applied an InVEST model to Fushun City to evaluate urban ecosystem services under the influence of large open-pit mines. Twenty-one key patches important for maintaining landscape connectivity were screened as the ecological sources in the network, from which ecological resistance surfaces were constructed by combining the impacts of mines on the environment. Minimum cumulative resistance (MCR) and gravity models were then used to extract and classify ecological corridors favorable to species migration and diffusion. Fushun City had large spatial differences in ecosystem service functions, with high-value areas concentrated in the forest-rich Dongzhou District and the northern Shuncheng District. Under the influence of open-pit mining, the ecosystem service capacity of the region south of the Hunhe River was poor and lacked ecological sources. Urban ecological resistance surfaces reached a maximum in the open-pit mining area, and 210 ecological corridors were estimated using the MCR model, of which 46 were important. Only two corridors crossed the West and East open pit, forming two "ecological fracture surfaces." The Dongzhou and eastern Shuncheng districts had complex network structures and stable ecological environments. In contrast, the central and southern parts of Fushun City lacked ecological corridors owing to the influence of mining pits and gangue mountains, had simple network structures, and low connectivities with other sources. Combined with Fushun City's development plan, we propose that ecological network optimization should add new ecological source sites, reconstruct and repair ecological corridors, and upgrade ecological breakpoints. This study provides reference and basis for ecological network research in mining cities influenced by open-pit mines.

    Read More on PubMed
  • L. is a genus exhibiting rapid radiation and represents a typical case for studying plastid gene adaptation in species that spread from high altitudes to low altitudes. In this study, 23 samples of 18 species were collected from the Qinghai-Tibetan Plateau and five scattered alpine areas, and the plastid genomes (plastomes) of these species were sequenced, annotated, and compared between high-altitude and widely distributed groups. The plastomes of were found to be highly conserved in terms of gene size, content, and order but highly variable in several lineage-specific features, such as codon usage bias, IR boundary shifting, and distinct repeat sequence structures binding to SSRs. Codon usage in the genes of photosystem II exhibited an obvious preference, reflecting significant environmental adaptation pressures. In this study, three repeat regions compounded with trinucleotide and mononucleotide repeats were found for the first time in , , and . High-variability regions such as , , , and were screened, laying the foundation for the precise identification of these species. The phylogenetic analysis revealed the occurrence of cyto-nuclear discordance, likely originating from the frequent interspecific hybridization events observed within species during rapid radiation. Dioecious and hermaphrodite species can be broadly categorized into two subclades, probably they have different environmental adaptation strategies in response to climate change. In addition, the phylogenetic tree supported the monophyly of and , which compose Sect. In conclusion, plastome data enrich the genetic information available for the genus and may provide insight into species migration events during climate change.

    Read More on PubMed

Proudly Supported By:

Grateful for our sponsors' invaluable support!